您现在的位置是: 首页 > 招生信息 招生信息

高考三角函数大题及答案,高考三角函数小题及答案

tamoadmin 2024-07-25 人已围观

简介1.高中数学三角函数的大题解法2.高中数学,三角函数,两道大题,3.数学三角函数大题,详细过程蟹蟹4.高三复习三角函数的重要知识点和几道典型例题5.大赠送啊,三角函数题,Y=1/2 cosX^2 +3/2 sinXcosX + 1=1/2(1+cos2x)/2+3/4sin2x+1=1/2(1/2cos2x+3/2sin2x)+3/2=1/2sin(2x+π/6)+3/2故最小正周期 T=2π/w

1.高中数学三角函数的大题解法

2.高中数学,三角函数,两道大题,

3.数学三角函数大题,详细过程蟹蟹

4.高三复习三角函数的重要知识点和几道典型例题

5.大赠送啊,三角函数题,

高考三角函数大题及答案,高考三角函数小题及答案

Y=1/2 cosX^2 +√3/2 sinXcosX + 1

=1/2(1+cos2x)/2+√3/4sin2x+1

=1/2(1/2cos2x+√3/2sin2x)+3/2

=1/2sin(2x+π/6)+3/2

故最小正周期 T=2π/w=π

最大值是 1/2+3/2=2

高中数学三角函数的大题解法

1、a?=b(b+c)

a?=b?+bc

a?=b?+c?-2bccosA

=b?+bc

c?-2bccosA=bc

c(c-2bcosA)=bc

c-2bcosA=b

sinC-2sinBcosA

=sin(A+B)-2sinBcosA

=sin(A-B)=sinB,

得B=A-B,得A-2B=0.

3、sin^2A+sin^2B=1

sin?A+sin?B=1

sin?A+cos?A=1

⊿ABC是以∠C为90°的直角三角形。

设面积最大值时,sinA为∠A的sin值,则。

12sinA+12cosA

=12(sinA+cosA)

=12√2(√2/2sinA+√2/2cosA)

sinA=√2/2

面积最大为12√2。

2、直角或等腰三角形。

解:(cosA+2cosC) / (cosA+2cosB)=b/c

(cosA+2cosC) / (cosA+2cosB)=sinB/sinC

方法一:

∵(cosA+2cosC)/(cosA+2cosB)=sinB/sinC,

∴cosAsinC+2cosCsinC=cosAsinB+2cosBsinB

∴cosA(sinC-sinB)=sin2B-sin2C=2sin(B-C)cos(B+C)=-2sin(B-C)cosA

一、当cosA=0时,A=90°,此时三角形是直角三角形。

二、当cosA≠0时,两边同除以cosA,得:sinB-sinC=2sin(B-C)

∴2sin[(B-C)/2]cos[(B+C)/2]=4sin[(B-C)/2]cos[(B-C)/2]

∴2sin[(B-C)/2]{cos[(B+C)/2]-2cos[(B-C)/2]}=0

∴sin[(B-C)/2]=0,或cos[(B+C)/2]-2cos[(B-C)/2]=0。

1、由sin[(B-C)/2]=0,得:B=C。

2、由cos[(B+C)/2]-2cos[(B-C)/2]=0,得:

-3sin(B/2)sin(C/2)-cos(B/2)cos(C/2)=0。

显然,B/2、C/2都是锐角,∴sin(B/2)>0,sin(C/2)>0,cos(B/2)>0,cos(C/2)>0

∴-3sin(B/2)sin(C/2)-cos(B/2)cos(C/2)=0是不可能的。

综合1、2所述,得:B=C,∴此时三角形是等腰三角形。

由一、二所述,得:满足条件的三角形是直角三角形或等腰三角形。

方法二:

∵(cosA+2cosC)/(cosA+2cosB)=sinB/sinC,

∴cosAsinC+2cosCsinC=cosAsinB+2cosBsinB

由余弦定理、正弦定理,容易得到:

[(b^2+c^2-a^2)/(2bc)]c+2[(a^2+b^2-c^2)/(2ab)]c

=[(b^2+c^2-a^2)/(2bc)]b+2[(a^2+c^2-b^2)/(2ac)]b

去分母,得:

ac(b^2+c^2-a^2)+2c^2(a^2+b^2-c^2)

=ab(b^2+c^2-a^2)+2b^2(a^2+c^2-b^2)

∴ac(b^2+c^2-a^2)+2c^2(a^2-b^2-c^2)+4b^2c^2

=ab(b^2+c^2-a^2)+2b^2(a^2-c^2-b^2)+4b^2c^2

∴(b^2+c^2-a^2)(ac-2c^2-ab+2b^2)=0

∴b^2+c^2-a^2=0,或ac-2c^2-ab+2b^2=0。

一、由b^2+c^2-a^2=0,得:此时的三角形是直角三角形。[勾股定理的逆定理]

二、由ac-2c^2-ab+2b^2=0,得:(ac-ab)+2(c^2-b^2)=0,

∴a(c-b)+2(c+b)(c-b)=0,∴(c-b)(a+2c+2b)=0。

显然,a+2c+2b>0,∴c-b=0,得:c=b,∴此时的三角形是等腰三角形。

综合一、二,得满足条件的三角形是直角三角形或等腰三角形。

高中数学,三角函数,两道大题,

这些题目1看图写函数表达式,2给出函数的性质写表达式,3会用角公司变化函数,4会求函数的和固定定义域条件下单调性和固定定义区间的最值,5会求各种情况下函数的周期,6与向量联系解大题,7会画在固定定义域中的函数的图像。

数学三角函数大题,详细过程蟹蟹

五:积化成和差,在合并成一个正弦或余弦函数,根据正弦余弦函数的极值进行求解;也可以使用导数=0的办法求解。

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

后式-前式:

cos(α-β)-cos(α+β)=2sinαsinβ

sinαsinβ=(1/2)[cos(α-β)-cos(α+β)]

根据这个公式:

y=(1/2)[cos(2π/3)-cos2x]

=(1/2)(-1/2)-(1/2)cos2x

=-1/4-(1/2)cos2x

最大值cos2x=-1

y=-1/4+(1/2)=1/4

最小值cos2x=1

y=-1/4-(1/2)=-3/4

周期:

2x:周期2π,

x:周期π

y'=cos(x-π/3)sin(x+π/3)+sin(x-π/3)cos(x+π/3)

=sin2x

2x=kπ,x=kπ/2,是,y'=0,y有极值;

y=sin(kπ/2-π/3)sin(kπ/2+π/3)

k是偶数,

y=-sin(π/3)sin(π/3)=-3/4,极小值

k是奇数:

y=cos(π/3)cos(π/3)=1/4,极大值

周期:极值点之间是半个周期,π/2,因此周期=π。

也可以冲相邻两个极大值或极小值点之间为一个周期,推得周期我2×π/2,π

高三复习三角函数的重要知识点和几道典型例题

第一题,不要直接代进去算,这样比较麻烦。你可能把它变形呀,二倍角公式你知道不?

sin2a=2sinacosa

就是说f(x)=sin2x+cos2x

然后再变形就是f(x)=sin(2x+pi/4)    pi就是那个pai。

这是基本的公式变形。

大赠送啊,三角函数题,

同角三角函数的基本关系

倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)

平常针对不同条件的常用的两个公式

sin? α+cos? α=1 tan α *cot α=1

一个特殊公式

(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)

锐角三角函数公式

正弦: sin α=∠α的对边/∠α 的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边

二倍角公式

正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切 tan2A=(2tanA)/(1-tan^2(A))

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin(3a) =sin(a+2a) =sin2acosa+cos2asina =2sina(1-sin?a)+(1-2sin?a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos?a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sina(3/4-sin?a) =4sina[(√3/2)?-sin?a] =4sina(sin?60°-sin?a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos?a-3/4) =4cosa[cos?a-(√3/2)^2] =4cosa(cos?a-cos?30°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a)

n倍角公式

sin(n a)=Rsina sin(a+π/n)……sin(a+(n-1)π/n)。 其中R=2^(n-1) 证明:当sin(na)=0时,sina=sin(π/n)或=sin(2π/n)或=sin(3π/n)或=……或=sin(n-1)π/n 这说明sin(na)=0与{sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin(n-1)π/n=0是同解方程。 所以sin(na)与{sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin(n-1)π/n成正比。 而(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ),所以 {sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin(n-1π/n 与sina sin(a+π/n)……sin(a+(n-1)π/n)成正比(系数与n有关 ,但与a无关,记为Rn)。 然后考虑sin(2n a)的系数为R2n=R2*(Rn)^2=Rn*(R2)^n.易证R2=2,所以Rn= 2^(n-1)

半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

和差化积

sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

两角和公式

cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ

积化和差

sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2

双曲函数

sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A? +B? +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容

诱导公式

sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限

万能公式

sinα=2tan(α/2)/[1+(tan(α/2))?] cosα=[1-(tan(α/2))?]/[1+(tan(α/2))?] tanα=2tan(α/2)/[1-(tan(α/2))?]

其它公式

(1) (sinα)?+(cosα)?=1 (2)1+(tanα)?=(secα)? (3)1+(cotα)?=(cscα)? 证明下面两式,只需将一式,左右同除(sinα)?,第二个除(cosα)?即可 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-C tan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得证 同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC可得出以下结论 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)?+(cosB)?+(cosC)?=1-2cosAcosBcosC (8)(sinA)?+(sinB)?+(sinC)?=2+2cosAcosBcosC 其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a)

编辑本段内容规律

三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在. 1、三角函数本质:

[1] 根据右图,有 sinθ=y/ r; cosθ=x/r; tanθ=y/x; cotθ=x/y。 深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导 sin(A+B) = sinAcosB+cosAsinB 为例: 推导: 首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。 A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β)) OA'=OA=OB=OD=1,D(1,0) ∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2 和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2) 单位圆定义 单位圆 六个三角函数也可以依据半径为一中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和 π/2 弧度之间的角。它也提供了一个图象,把所有重要的三角函数都包含了。根据勾股定理,单位圆的等式是: 图象中给出了用弧度度量的一些常见的角。逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同 x 轴正半部分得到一个角 θ,并与单位圆相交。这个交点的 x 和 y 坐标分别等于 cos θ 和 sin θ。图象中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sin θ = y/1 和 cos θ = x/1。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。 两角和公式

sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

α,β是一个钝角Δ的两个锐角

α+β<90

tan(α+β)>0 以下用a代表α,用b代表β

(tana+tanb)/(1-tanatanb)>0

tana>0 tanb>0

所以1-tanatanb>0

所以tanatanb<1对

a+b<90

a<90-b

sina<sin(90-b)=cosb

sina+sinb<sinb+cosb=根号2*sin(b+45)<=根号2

所以B对

a+b<90

a<90-b

cosa>cos(90-b)=sinb

cosa+cosb>sinb+cosb=根号2*sin(b+45)

sin(b+45)>sin45

根号2*sin(b+45)>1

所以C对

a+b<90

(a+b)/2<45

0<tan[(a+b)/2]<1

0<1-tan^2[(a+b)/2]<1

tan(a+b)=2tan[(a+b)/2]/{1-tan^2[(a+b)/2]}>2tan[(a+b)/2]

所以1/2tan(α+β)>tan[(α+β)/2]

D错

文章标签: # sin # cos # tan