您现在的位置是: 首页 > 教育政策 教育政策

2014高考导数,2014高考数学导数

tamoadmin 2024-06-17 人已围观

简介1.高考如何考导数大题2.导数公式高考会给出吗3.高考的数学考点有哪些?4.一道高考文数导数题,急求过程!5.高考数学的导数部分的题 如图所示6.一道导数高考题7.函数求导数的方法8.高考数学导数解题技巧一般情况下,f12不等于f21,但是若函数的二阶偏导数连续,则f12等于f21,条件是连续的二阶偏导数才可以。函数有二阶连续偏导数,本身必连续,则满足 f12 = f21。二阶偏导数连续的时候f1

1.高考如何考导数大题

2.导数公式高考会给出吗

3.高考的数学考点有哪些?

4.一道高考文数导数题,急求过程!

5.高考数学的导数部分的题 如图所示

6.一道导数高考题

7.函数求导数的方法

8.高考数学导数解题技巧

2014高考导数,2014高考数学导数

一般情况下,f12不等于f21,但是若函数的二阶偏导数连续,则f12等于f21,条件是连续的二阶偏导数才可以。

函数有二阶连续偏导数,本身必连续,则满足 f12 = f21。二阶偏导数连续的时候f12等于f21。对于f(u,v)来讲,f是二元函数,二阶偏导数:f11(uu),f12(uv),f21(vu),f22(vv)。其中f12和f21相同。一般不会,具体看评分标准。

x方向的偏导

设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点。把y固定在y0而让x在x0有增量△x,相应地函数z=f(x,y)有增量(称为对x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果△z与△x之比当△x→0时的极限存在,那么此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数,记作f'x(x0,y0)或函数z=f(x,y)在(x0,y0)处对x的偏导数,实际上就是把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数。

高考如何考导数大题

高考导数考什么?

高考导数题主要是考查与函数的综合,考查不等式、导数的应用等知识,难度属于中等难度。

都有什么题型呢?

①应用导数求函数的单调区间,或判定函数的单调性;

②应用导数求函数的极值与最值;

③应用导数解决有关不等式问题。

有没有什么解题技巧啦?

导数的解题技巧还是比较固定的,一般思路为

①确定函数f(x)的定义域(最容易忽略的,请牢记);

②求方程f′(x)=0的解,这些解和f(x)的间断点把定义 域分成若干区间;

③研究各小区间上f′(x)的符号,f′(x)>0时,该区间为增区间,反之则为减区间。

从这两步开始有分类讨论,函数的最值可能会出现极值点处或者端点处,多项式求导一般结合不等式求参数的取值范围,根据题目会有一定的变化,那接下来具体总结一些做题技巧。

技巧破解+例题拆解

1. 若题目考察的是导数的概念,则主要考察的是对导数在一点处的定义和导数的几何意义,注意区分导数与△y/△x之间的区别。

2. 若题目考察的是曲线的切线,分为两种情况:

(1)关于曲线在某一点的切线,求曲线y=f(x)在某一点P(x,y)的切线,即求出函数y=f(x)在P点的导数就是曲线在该点的切线的斜率.

(2)关于两曲线的公切线 ,若一直线同时与两曲线相切,则称该直线为两曲线的公切线.

导数公式高考会给出吗

高考数学导数大题出题特点及解法技巧:

1.若题目考察的是导数的概念,则主要考察的是对导数在一点处的定义和导数的几何意义,注意区分导数与△y/△x之间的区别。 

2.若题目考察的是曲线的切线,分为两种情况: 

 (1)关于曲线在某一点的切线,求曲线y=f(x)在某一点P(x,y)的切线,即求出函数y=f(x)在P点的导数就是曲线在该点的切线的斜率.  

(2)关于两曲线的公切线,若一直线同时与两曲线相切,则称该直线为两曲线的公切线. 

 高考导数有什么题型  

①应用导数求函数的单调区间,或判定函数的单调性; 

 ②应用导数求函数的极值与最值;  ③应用导数解决有关不等式问题。 

 导数的解题技巧和思路 

 ①确定函数f(x)的定义域(最容易忽略的,请牢记); 

 ②求方程f′(x)=0的解,这些解和f(x)的间断点把定义域分成若干区间; 

 ③研究各小区间上f′(x)的符号,f′(x)>0时,该区间为增区间,反之则为减区间。  高考数学导数主流题型及其方法  (1)求函数中某参数的值或给定参数的值求导数或切线 

 一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。

虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是: 

 先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x=k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。

高考的数学考点有哪些?

会。导数公式高考会给出,导数是高考数学的重点,同时也是难点,在高考中重点考查。导数(Derivative)是微积分中的重要基础概念。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

一道高考文数导数题,急求过程!

高考的数学考点有:

1、数列&解三角形

数列与解三角形的知识点在解答题的第一题中,是非此即彼的状态,近些年的特征是大题第一题两年数列两年解三角形轮流来,2014、2015年大题第一题考查的是数列,2016年大题第一题考查的是解三角形,故预计2017年大题第一题较大可能仍然考查解三角形。

数列主要考察数列的定义,等差数列、等比数列的性质,数列的通项公式及数列的求和。解三角形在解答题中主要考查正、余弦定理在解三角形中的应用。

2、立体几何

高考在解答题的第二或第三题位置考查一道立体几何题,主要考查空间线面平行、垂直的证明,求二面角等,出题比较稳定,第二问需合理建立空间直角坐标系,并正确计算。

3、概率

高考在解答题的第二或第三题位置考查一道概率题,主要考查古典概型,几何概型,二项分布,超几何分布,回归分析与统计,近年来概率题每年考查的角度都不一样,并且题干长,是学生感到困难的一题,需正确理解题意。

4、解析几何

高考在第20题的位置考查一道解析几何题。主要考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。

5、导数

高考在第21题的位置考查一道导数题。主要考查含参数的函数的切线、单调性、最值、零点、不等式证明等问题,并且含参问题一般较难,处于必做题的最后一题。

高考数学的导数部分的题 如图所示

这是我从箐优网弄来的,花了两优点,有一些还一个个对过去,让你方便看些,望采纳,谢谢

分析:(I)由题意曲线y=f(x)在(1,f(1))处的切线方程为x+y=1,故可根据导数的几何意义与切点处的函数值建立关于参数的方程求出两参数的值;

(II)由于f(x)=x^n(1-x),可求f′(x)=(n+1)x^n-1((n/n+1)-x),利用导数研究函数的单调性,即可求出函数的最大值;

(III)结合(II),欲证f(x)<1/ne.由于函数f(x)的最大值f(n/n+1)=(n/n+1)^n(1-n/n+1)=n^n/(n+1)^n+1,故此不等式证明问题可转化为证明

n^n/(n+1)^n+1< 1/ne,对此不等式两边求以e为底的对数发现,可构造函数φ(t)=lnt-1+1/t,借助函数的最值辅助证明不等式.

解答:解:(I)因为f(1)=b,由点(1,b)在x+y=1上,可得1+b=1,即b=0.

因为f′(x)=anx^n-1-a(n+1)x^n,所以f′(1)=-a.

又因为切线x+y=1的斜率为-1,所以-a=-1,即a=1,故a=1,b=0.

(II)由(I)知,f(x)=x^n(1-x),则有f′(x)=(n+1)x^n-1((n/n+1)-x),令f′(x)=0,解得x=n/n+1

在(0,n/n+1)上,导数为正,故函数f(x)是增函数;在(n/n+1,+∞)上导数为负,故函数f(x)是减函数;

故函数f(x)在(0,+∞)上的最大值为f(n/n+1)=(n/n+1)^n(1-n/n+1)=n^n/(n+1)^n+1

(III)令φ(t)=lnt-1+1/t,则φ′(t)=1/t -1/t^2=(t-1)/t^2(t>0)

在(0,1)上,φ′(t)<0,故φ(t)单调减;在(1,+∞),φ′(t)>0,故φ(t)单调增;

故φ(t)在(0,∞)上的最小值为φ(1)=0,

所以φ(t)>0(t>1)

则lnt>1-1/t,(t>1),

令t=1+1/n,得ln(1+1/n)>1/n+1,即ln(1+1/n)n+1>lne

所以(1+1/n)^n+1>e,即n^n/(n+1)n+1<1/ne

由(II)知,f(x)≤n^n/(n+1)^n+1<1/ne,

故所证不等式成立.

一道导数高考题

解:f’(x)=3x∧2+2ax+b

由在X=1处取得极值,得∶f(1)=1+a+b+a∧2=10 ①

f′(1)=3+2a+b=0 ②

解得a1=4,b1=-11,a2=-3,b2=3

又∵在②中Δ>0即Δ=4a∧2-12b﹥0

∴a2=-3,b2=3舍去

∴f(x)=x∧3+4x∧2-11x+16

∴f(2)=8+16-22+16=18

PS:你可能是方程解错了吧

顺便解释为什么不是Δ≥0,因为如果Δ=0了,导数最小值在a2=-3,b2=3时取0,导数图像最低点在x轴上,图像在x轴上方,整个函数都是单调递增的,与三次函数图像不符合,所以Δ≠0

望采纳,本人高二理科汪,几个月前学的

函数求导数的方法

解:(I)求导得f′(x)=2(x-a)lnx+(x-a)2x=(x-a)(2lnx+1-ax),

因为x=e是f(x)的极值点,

所以f′(e)=0

解得a=e或a=3e.

经检验,a=e或a=3e符合题意,

所以a=e,或a=3e

(II)①当0<x≤1时,对于任意的实数a,恒有f(x)≤0<4e2成立

②当1<x≤3e时,,由题意,首先有f(3e)=(3e-a)2ln3e≤4e2,解得3e-

2eln3e≤a≤3e+

2eln3e

由(I)知f′(x)=2(x-a)lnx+(x-a)2x=(x-a)(2lnx+1-ax),

令h(x)=2lnx+1-ax,则h(1)=1-a<0,h(a)=2lna>0且h(3e)=2ln3e+1-a3e≥2ln3e+1-3e+

2eln3e3e=2(ln3e-13

ln3e)>0

又h(x)在(0,+∞)内单调递增,所以函数h(x)在在(0,+∞)内有唯一零点,记此零点为x0

则1<x0<3e,1<x0<a,从而,当x∈(0,x0)时,f′(x)>0,当x∈(x0,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0,即f(x)在(0,x0)内是增函数,在(x0,a)内是减函数,在(a,+∞)内是增函数

所以要使得对任意的x∈(0,3e],恒有f(x)≤4e2成立只要有f(x0)=(x0-a)2lnx0≤4e2f(3e)=(3e-a)2ln3e≤4e2

有h(x0)=2lnx0+1-ax0=0得a=2x0lnx0+x0,将它代入f(x0)=(x0-a)2lnx0≤4e2得4x02ln2x0≤4e2

又x0>1,注意到函数4x2ln2x在(1,+∞)上是增函数故1<x0≤e

再由a=2x0lnx0+x0,及函数2xlnx+x在(1,+∞)上是增函数,可得1<a≤3e

由f(3e)=(3e-a)2ln3e≤4e2解得3e-

2eln3e≤a≤3e+

2eln3e,

所以得3e-

2eln3e≤a≤3e

综上,a的取值范围为3e-

2eln3e≤a≤3e (I)利用极值点处的导数值为0,求出导函数,将x=e代入等于0,求出a,再将a的值代入检验.

(II)对x∈(0,3e]进行分区间讨论,求出f(x)的最大值,令最大值小于4e2,解不等式求出a的范围

高考数学导数解题技巧

利用导数定义求函数的导数是学习导数的第一步,其中涉及极限的相关运算。小编就带大家看看如何利用导数定义求一些基本函数的导数。

开启分步阅读模式

操作方法

01

使用导数定义求解导数的步骤主要分为三个步骤。这里以幂函数y=x^n为例说明。

02

第一步,求出因变量的增量Δy=f(x+Δ)-f(x)。

03

第二步,计算Δy与Δx的比值。

04

第三步,求极限,令Δx趋近于0,可以求得极限。

05

幂函数的求解比较简单。对于一些其他较复杂的函数,还需要借=借助一些数学公式以及极限运算。例如对于y=sin(x)的求解,就需要利用和差化积公式与

lim(x->0){sin(x)/x}=1这两个公式。

06

同样,首先计算增量Δy=f(x+Δ)-f(x)。

07

接下来的两步可以一同进行。

08

以下是常用的一些导数公式,大家可以试着去推导一下。导数公式的计算,需要使用大量极限计算的技巧,希望大家多多训练。

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。小编整理了求导数的方法,供参考!

一、总论

一般来说,导数的大题有两到三问。每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。

二、主流题型及其方法

(1)求函数中某参数的值或给定参数的值求导数或切线

一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:

先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x=k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。

注意:

①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。

②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。所以做两个字来概括这一类型题的方法就是:淡定。别人送分,就不要客气。

③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。切线要写成一般式。

(2)求函数的单调性或单调区间以及极值点和最值

一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。这类问题的方法是:

首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。

极值的求法比较简单,就是在上述步骤的基础上,令导函数为零,求出符合条件的根,然后进行列表,判断其是否为极值点并且判断出该极值点左右的单调性,进而确定该点为极大值还是极小值,最后进行答题。

最值问题是建立在极值的基础之上的,只是有些题要比较极值点与边界点的大小,不能忘记边界点。

注意:

①要注意问题,看题干问的是单调区间还是单调性,极大值还是极小值,这决定着你最后如何答题。还有最关键的,要注意定义域,有时题目不会给出定义域,这时就需要你自己写出来。没有注意定义域问题很严重。

②分类要准,不要慌张。

③求极值一定要列表,不能使用二阶导数,否则只有做对但不得分的下场。

(3)恒成立或在一定条件下成立时求参数范围

这类问题一般都设置在导数题的第三问,也就是最后一问,属于有一定难度的问题。这就需要我们一定的综合能力。不仅要对导数有一定的理解,而且对于一些不等式、函数等的知识要有比较好的掌握。这一类题目不是送分题,属于扣分题,但掌握好了方法,也可以百发百中。方法如下:

做这类恒成立类型题目或者一定范围内成立的题目的核心的四个字就是:分离变量。一定要将所求的参数分离出来,否则后患无穷。有些人总是认为不分离变量也可以做。一些简单的题目诚然可以做,但到了真正的难题,分离变量的优势立刻体现,它可以规避掉一些极为繁琐的讨论,只用一些简单的代数变形可以搞定,而不分离变量就要面临着极为麻烦的讨论,不仅浪费时间,而且还容易出差错。所以面对这样的问题,分离变量是首选之法。当然有的题确实不能分离变量,那么这时就需要我们的观察能力,如果还是没有简便方法,那么才会进入到讨论阶段。

高考数学导数解题技巧?

1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。

2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。

3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。

4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。

5.涌现了一些函数新题型。

6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。

7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。

8.求极值, 函数单调性,应用题,与三角函数或向量结合。

高考数学导数中档题是拿分点?

1.单调性问题

研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。

2.极值问题

求函数y=f(x)的极值时,要特别注意f'(x0)=0只是函数在x=x0有极值的必要条件,只有当f'(x0)=0且在? _? 0 时,f'(x0)异号,才是函数y=f(x)有极值的充要条件,此外,当函数在x=x0处没有导数时, 在 x=x0处也可能有极值,例如函数 f(x)=|x|在x=0时没有导数,但是,在x=0处,函数f(x)=|x|有极小值。

还要注意的是, 函数在x=x0有极值,必须是x=x0是方程f'(x)=0的根,但不是二重根(或2k重根),此外,在确定极值点时,要注意,由f'(x)=0所求的驻点是否在函数的定义域内。

3.切线问题

曲线y=f(x)在x=x0处的切线方程为y-f(x0)=f'(x0)(x-x0),切线与曲线的综合,可以出现多种变化,在解题时,要抓住切线方程的建立,切线与曲线的位置关系展开推理,发展? 理性思维? 。关于切线方程问题有下列几点要注意:

(1)求切线方程时,要注意直线在某点相切还是切线过某点,因此在求切线方程时,除明确指出某点是切点之外,一定要设出切点,再求切线方程;

(2) 和曲线只有一个公共点的直线不一定是切线,反之,切线不一定和曲线只有一个公共点,因此,切线不一定在曲线的同侧,也可能有的切线穿过曲线;

(3) 两条曲线的公切线有两种可能,一种是有公共切点,这类公切线的特点是在切点的函数值相等,导数值相等;另一种是没有公共切点,这类公切线的特点是分别求出两条曲线的各自切线,这两条切线重合。

文章标签: # 导数 # 函数 # x0