您现在的位置是: 首页 > 教育研究 教育研究
2017年高考数学3_2017高考数学第3题
tamoadmin 2024-06-12 人已围观
简介1.高考数学数列2.2017年浙江高考数学试卷19题怎么解3.高考数学几何题,3小问的,第三问过程都对,就是答案算错,扣几分?求经验帝分析。 高考 数学最后几道大题往往是考试得分的关键,那怎样才能让孩子在考试中把握最后五道大题分呢?下面我为大家搜索整理了关于如何拿下 高考 数学最后五道大题,欢迎参考借鉴,希望对大家有所帮助!想了解更多相关信息请持续关注我们应届毕业生培训网!
1.高考数学数列
2.2017年浙江高考数学试卷19题怎么解
3.高考数学几何题,3小问的,第三问过程都对,就是答案算错,扣几分?求经验帝分析。
高考 数学最后几道大题往往是考试得分的关键,那怎样才能让孩子在考试中把握最后五道大题分呢?下面我为大家搜索整理了关于如何拿下 高考 数学最后五道大题,欢迎参考借鉴,希望对大家有所帮助!想了解更多相关信息请持续关注我们应届毕业生培训网!
一道解答题:三角或数列
三角现状分析:
与数列相比考三角的概率更大,三角部分的公式性质非常多,很多考生特别是文科生对其记忆不牢,所以这道题虽然是第一道大题,难度较低,但得分情况并不理想。
复习方向:
对公式和性质强化记忆,力求准确熟练,特别注意二倍角公式、降幂公式、正余弦定理的应用,对公式的逆用应进行专题训练。
数列现状分析:
由于新课改增加了选做题,所以数列大题出现较少。
复习方向:
加强对等差、等比基本公式的认识,特别要求加强错位相减法、裂项相消法的求和训练,此题做完之后,一般在草纸上,令n=1,观察求得的S1与a1是否相等,如果不等,立刻检查。
数学第二道解答题:概率
概率现状分析:
很多时候是应用问题,需要学生有较强的阅读理解能力。此题经常一题多问,考多个知识点。
理科复习方向:
加强概率,分布列,期望的训练;根据分布列的概率之和等于1来进行检查。
文科复习方向:
加强古典概型,独立性检验,相关性分析的训练。
数学第三道解答题:立体几何
理科现状分析:
空间向量+立体几何,建系设点是入手点,建系之前要确定或证明三条线两两垂直,然后建立空间直角坐标系;整道题计算量较大,但思路较为清晰。
理科复习方向:
要理解和重视?法向量?的作用。
文科现状分析:
主要考查三个方面平行,垂直,体积。
文科复习方向:
注意书写的规范性,例如证明线面平行,必须要说明线不在平面内;求证线面垂直,必须说明垂直于平面上两条相交直线,这些词语虽然简单,但很容易扣分。
数学第四道解答题:圆锥曲线
现状分析:
根据考纲的要求,大题考椭圆抛物线\双曲线大题几乎不考。
解题方向:
第一问,多数是求曲线的方程,离心率e,难度较低;
第二问,形式多样,这时要争取步骤分,多数情况为探究直线和曲线的位置关系。把直线带入曲线,得到x或y的一元二次方程,然后列出,并把相关数据代入,会大致得2分,这时一共会得到5~6分,如果接着根据题意,把韦达定理带入弦长公式,或者向量垂直公式,又会得到1~2分,这时可以收笔,做下一道题。
(注意:再继续计算的话,计算量较大,一般基础的同学在这里既浪费时间,又得不到分数,不如适时收笔,先做下一题的第一问,若有时间剩余,再回头补足不迟。)
数学第五道解答题:函数(导数)
现状分析:
压轴题,得分率较低。
解题方向:
第一问,求切线,讨论含参函数的单调性,求最值极值等,难度不是很大,给这一问留出时间,能得到4分左右。
第二问开始难度陡增,第三问是选拔140分以上的尖子生。
建议:
如果就两问,第二问放弃;如果是三问,第二问适当做做,第三问放弃。
高考数学数列
对于文科生来说,数学是一门比较特别的学科,高考要想数学分数高,必须掌握必考知识点。下面是我为大家整理的高考文科数学知识点,希望对大家有所帮助。
高考文科数学知识点
第一,函数与导数
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析
主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
第七,解析几何
高考的难点,运算量大,一般含参数。
文科数学高频必考考点
第一部分:选择与填空
1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);
2.常用逻辑用语(充要条件,全称量词与存在量词的判定);
3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);
4.幂、指、对函数式运算及图像和性质
5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);
6.空间体的三视图及其还原图的表面积和体积;
7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;
8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;
9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);
10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;
11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;
12.向量数量积、坐标运算、向量的几何意义的应用;
13.正余弦定理应用及解三角形;
14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;
15.线性规划的应用;会求目标函数;
16.圆锥曲线的性质应用(特别是会求离心率);
17.导数的几何意义及运算、定积分简单求法
18.复数的概念、四则运算及几何意义;
19.抽象函数的识别与应用;
第二部分:解答题
第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;
第18题:(文)概率与统计(概率与统计相结合型)
(理)离散型随机变量的概率分布列及其数字特征;
第19题:立体几何
①证线面平行垂直;面与面平行垂直
②求空间中角(理科特别是二面角的求法)
③求距离(理科:动态性)空间体体积;
第20题:解析几何(注重思维能力与技巧,减少计算量)
①求曲线轨迹方程(用定义或待定系数法)
②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)
③求定点、定值、最值,求参数取值的问题;
第21题:函数与导数的综合应用
这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。
主要考查:分类讨论思想;化归、转化、迁移思想;整体代换、分与合思想
一般设计三问:
①求待定系数,利用求导讨论确定函数的单调性;
②求参变数取值或函数的最值;
③探究性问题或证不等式恒成立问题。
第22题:三选一:
(1)几何证明主要考查三角形相似,圆的切割线定理,证明成比例,求角度,求长度;利用射影定理解决圆中计算和证明问题是历年高考题的 热点 ;
(2)坐标系与参数方程,主要抓两点:参数方程、极坐标方程互化为普通方程;有参数、极坐标方程求解曲线的基本量。这类题,思路清晰,难度不大,抓基础,不做难题。
(3)不等式选讲:绝对值不等式与函数结合型。设计上为:①解含有参变数关于x的不等式;②求解不等式恒成立时参变数的取值;③证明不等式(利用均值定理、放缩法等)。
2018高考文科数学知识点:高中数学知识点 总结
必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题
3、圆方程:
必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
高考文科数学知识点总结
乘法与因式分解
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
根与系数的关系
X1+X2=-b/aX1__X2=c/a注:韦达定理
判别式
b2-4a=0注:方程有相等的两实根
b2-4ac>0注:方程有一个实根
b2-4ac<0注:方程有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积公式
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB
-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和公式
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理:a/sinA=b/sinB=c/sinC=2R
注:其中R表示三角形的外接圆半径
余弦定理:b2=a2+c2-2accosB
注:角B是边a和边c的夹角
高考文科数学知识点总结相关 文章 :
★ 2022北京卷高考文科数学试题及答案解析
★ 2022全国新高考Ⅰ卷文科数学试题及答案解析
★ 2022年全国新高考1卷数学试题及答案解析
★ 2022全国新高考Ⅱ卷文科数学试题及答案解析
★ 高中导数知识点总结大全
★ 山东2022高考文科数学试题及答案解析
★ 湖北2022高考文科数学试题及答案解析
★ 2022河北高考文科数学试题及答案解析
★ 高中文科数学复习指导与注意事项
★ 2017高考数学三角函数知识点总结
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();2017年浙江高考数学试卷19题怎么解
a1=1,a(n+1)=an+1/an
(1)不知道要证明啥
(2)证明√(2n-1)≤an≤√(3n-2)
(3)求正整数m使得|a2017-m|最小
(2)
经验证n=1,2,3,4时不等式都成立,假设当n=N时不等式成立,即√(2N-1)≤aN≤√(3N-2),则2N-1≤aN^2≤3N-2。
则当n=N+1时,2(N+1)-1<2N-1+2+1/(3N-2)≤a(N+1)^2=aN^2+1/aN^2+2≤3N-2+2+1/(2N-1)≤3N-2+2+1=3(N+1)-2
所以√[2(N+1)-1]≤a(N+1)≤√[3(N+1)-2]
所以当n=N+1时,不等式也成立。即对于任意正整数n,都有√(2n-1)≤an≤√(3n-2)。
(3)
由(2)可知√3969=63<√4033≤a2017≤√6049<78=√6084,
为了方便,我们把a2017往回走遍历a2016,a2015,...,an的做法叫下行,而往前遍历a2018,a2019,...,ak的做法叫上行。
1/78<a2017-a2016=1/a2016<1/63,1/78<a2018-a2017=1/a2017<1/63
则上两式表明下行时最多不超过78次,an的值就要比a2017减小1;而上行时,最少要63次ak的值才比a2017增加1.因为下行时an减小的速度会越来越快,而上行时增加的速度会越来越慢。
现在来看a(2017-78)=a1939和a(2017+63)=a2080的情况
62<√3877≤a1939≤√5815<77,64<√4159≤a2080≤√6238<79
4033≤a2017^2≤6049
4033=3n-2,n=1345;6049=2n-1,n=3025,3025-1345=1680
则2689≤a1345^2≤4033,6049≤a3025^2≤9073,6049-2689=3360=1680*2,下限不计
2691≤a1346^2≤4036,6047≤a3024^2≤9070
1/4033+2≤a1346^2-a1345^2=1/a1345^2+2≤1/2689+2
1/9070+2≤a3025^2-a3024^2=1/a3024^2+2≤1/6047+2
2017-1345=672,上限为4033+672*2=5377,672/4033<误差<672/2689
3025-2017=1008,下限为6049-1008*2=4033
3025-1345=1680,4033+1680*2=7393,7393-1008*2=5377
2689=3n-2,n=897,1793≤a897^2≤2689,1795≤a898^2≤2692,
2+1/2689≤a898^2-a897^2=1/a897^2+2≤2+1/1793
2017-897=1120,2689+1120*2=4929=a2017^2上限,1120/2689<误差<1120/1793
1793=3n-2,n=599,1197≤a599^2≤1795,
2+1/1795≤a600^2-a599^2=2+1/a599^2≤2+1/1197
2017-599=1418,1795+1418*2=4633=a2017^2上限,1428/1795<误差<1418/1197
1197+1=3n-2,n=400,799≤a400^2≤1198,
2+1/1198≤a401^2-a400^2=2+1/a400^2≤2+1/799
2017-400=1617,1201+1617*2=4435=a2017^2上限,1617/1198<误差<1616/799
799=3n-2,n=267,533≤a267^2≤799,
2+1/799≤a268^2-a267^2=2+1/a267^2≤2+1/533
2017-267=1750,799+1750*2=4299=a2017^2上限,1750/799<误差<1750/533
533+1=3n-2,n=179,357≤a179^2≤535,
2+1/535≤a268^2-a267^2=2+1/a267^2≤2+1/357
2017-179=1750,535+1838*2=4211=a2017^2上限,1838/535<误差<1838/357
359-1=3n-2,n=120,239≤a120^2≤358,
2+1/358≤a121^2-a120^2=2+1/a120^2≤2+1/239
2017-120=1750,358+1897*2=4152=a2017^2上限,4<1897/358<误差<1897/239<8
到此终于可以结束了,因为a2017^2上限4152即使加上最大误差8开方后也小于64.5,
而a2017^2下限4033开方后大于63.5,所以m=64.
高考数学几何题,3小问的,第三问过程都对,就是答案算错,扣几分?求经验帝分析。
2017年浙江省高考数学试卷,延续了浙江省多年的数学命题特色,简约中显大气,朴实中有灵气。
试题情景熟悉,充分考查了学生的数学素养、思维品质与学习潜能,体现出较强的区分度和选拔功能。
今年的数学高考试卷,是浙江省自主命题以来出得好的试卷之一。试题立足基础知识、基本技能,一路下来行云流水,拾阶而上。试题体现了很好的区分度,基本上会让考生有多少水平就能拿多少分。
试卷注重对能力的考查,强调数学思维与本质,要求深刻理解概念,并能合理转化、灵活运用。如选择题第9、10题,填空题第17题,解答题第20、21、22题,设问层次递进,这样的设计,对不同的基础、不同的能力水平的学生都提供了适当的思考空间,体现了较好的区分度,凸显了试卷的选拔功能。但想顺利解决,需要学生具有较强的思维能力和解题能力。
这样的题一般是12分,如果是最后一题的话就是14分,第三小问过程对了,答案算错的话,一般扣2~3分!老师也会根据卷面来决定扣2分或者3分! 所以在做题的时候,思路一定要清晰,卷面要保持整洁,不然扣的就不只3分了,4分或者5分都可能扣的!