您现在的位置是: 首页 > 招生信息 招生信息

高考数学的考试大纲在哪里-高考数学的考试大纲

tamoadmin 2024-10-05 人已围观

简介1.2012福建省高考 文科数学考试大纲2.江苏成人高考专升本《高等数学一》考试大纲?3.2006年高考的数学考试大纲4.高考的一卷,二卷是什么意思2012福建省高考 文科数学考试大纲我网上转载的希望对你有帮助2012年高考数学《考试说明》与2011年相比有什么特点和变化?与2011年相比,2012年的文理科《考试说明》在命题思想、试卷结构、目标与要求等方面都没有变化,不过,部分例题改成了2011

1.2012福建省高考 文科数学考试大纲

2.江苏成人高考专升本《高等数学一》考试大纲?

3.2006年高考的数学考试大纲

4.高考的一卷,二卷是什么意思

2012福建省高考 文科数学考试大纲

高考数学的考试大纲在哪里-高考数学的考试大纲

我网上转载的希望对你有帮助

2012年高考数学《考试说明》与2011年相比有什么特点和变化?

与2011年相比,2012年的文理科《考试说明》在命题思想、试卷结构、目标与要求等方面都没有变化,不过,部分例题改成了2011年各地高考卷中出现的试题。这些更新、更鲜活的例题,同样是用来解释、说明对考生的知识和能力要求。考试内容方面,和去年相比,理科数学选考内容与要求有所调整,特别是坐标系与参数方程、不等式选讲等取消了去年要求的部分考点。参考试卷改动较大,不过,题型与试卷结构仍保持不变。

今年的理科《考试说明》在“选考内容与要求”中,删除了哪些内容?为什么?

今年的理科《考试说明》在“选考内容与要求”中,删除了部分内容。在“2.坐标系与参数方程”中,删除了两小条:一条是“了解坐标系、球坐标系中表示空间重点的位置和方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别”;还有一条是“了解平摆线、渐开线的生成过程,并能推导出它们的参数方程”。此外,在“3.不等式选讲”中,删除了“会用向量递归方法讨论排序不等式”和“会用数学归纳法证明贝努利不等式”。

为什么要删除这些内容呢?我认为是因为这些内容既繁又难,不易掌握,且应用不广,历年各地高考中基本不会考到,甚至有的都不教它,本着以人为本,实事求是的精神,不如直接删去更好。故称“以人为本定难易,实事求是删繁冗”。

今年《考试说明》参考试卷有哪些改动?

理科试卷总共21小题,其中有13道跟去年不一样。文科试卷总共22小题,其中有9道题跟去年不一样。它体现了高考的命题原则:注重时代性和实践性;函数与导数、数列、三角函数、立体几何、解析几何、概率与统计要占有较大的比例。体现了以人为本,与时俱进的精神。通过对《考试说明》样题的研究,我们发现样题的主要内容仍在传统教材的传统章节中。考试的重难点仍在函数、数列、不等式、三角函数、立体几何和平面解析几何中,因而立足基础成为高考复习的主旋律。故称“年年岁岁意相似,岁岁年年题不同”,“立足基础应万变,直面鲜活仍从容。”

《考试说明》中对知识要求的三个层次要怎样理解?

高考数学《考试说明》指出“对知识的要求依次是了解、理解、掌握三个层次。”考生首先要分清什么是“了解、理解、掌握”。在一个板块里,哪些需要了解,哪些需要理解?又有哪些需要掌握?实际上,这里是说,知识要求由低到高分为三个层次,依次是“知道/了解/模仿” “理解/逻辑判断/判别/应用” “掌握/证明/讨论迁移”,且高一级的层次要求包括低一级的层次目标。

例如《考试说明》中对“函数”的知识要求是:

①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

③了解简单的分段函数,并能简单应用.

④理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义。

⑤会运用函数图像理解和研究函数的性质。

在这个部分,没有提出“掌握”的要求,其中“了解”是最低层次的要求,“会求、会算”与“了解”是同一层次的要求;“理解”的层次高于“了解”,要求能用数学语言正确地表达,会比较、会辨别.特别注意④中,对函数的单调性的要求是“理解”,而对奇偶性的要求是“了解”,显然对单调性的要求更高。

如何研读、细读《考试说明》,并吃透《考试说明》?

对《考试说明》,教师要研读,考生要细读。考生尤其要关注例题的解法以及解法后面的一段简短的文字。通过这段文字的说明,考生可以了解知识题的难易程度、能力是通过什么方式来考查的、思想方法是如何渗透在解题思路当中的,这能够帮助考生更好地认识高考的命题特点和方法,更有针对性地展开训练。吃透《考试说明》,复习中要强调数学思维的训练.现在有些考生做题目,知识列了一大堆,叙述似是而非,自以为对,实际上混乱不堪。这恰恰是题海战术的恶果,应付题海,疲于奔命,生搬硬套,囫囵吞枣,这样做的结果是:考生的数学素质得不到提高,培养的考生思维能力和推理能力很差,不能适应大学和社会的需求。

此外,考生还应该把参考试卷当作一份模拟卷,在一轮复习之后,花2个小时时间给自己进行一次“模拟考”,仿真感受一下高考试卷结构,体会参考试卷的考查方式,学习如何在考试中合理分配时间等。

您认为下一段高考复习的策略是什么?

在下一段高考复习有限的时间内,如何使我们的复习充分有效、高效,是我们每位考生、教师及家长应当认真反思的问题。应对新课程高考命题的新理念,新趋势及其命制方法,我们的复习策略,我认为是以下十六字方针:以人为本,以本为本,立足基本,求实悟本。

您是怎样理解在高考命题“以人为本”的理念?

高考试题应充分尊重学生在学习数学方面的差异,力求使不同思维方式的学生都能得到科学的评价,整份试卷的设计应合理,注重整体效应。

以人为本,是要照顾到方方面面,让好生也有发挥的余地,让差生也有成功的体验,让中等生努力之后也能得到理想的分数。比如,2011年福建省高考试卷对好生而言,理科第10题、15题、20题,文科第12题、16题、22题就是有挑战性的问题,是本次考卷中比较有创新的试题,是为好生准备的,当然这样的问题中等生努力一下也是可以做好的。

对差生而言,有非常多考查基本概念、基本运算、基本方法的问题,比如理科1、2、3、4、5、6、11、12、13、14、16、17、21等等,都是容易题,文科1、2、3、4、5、6、7、8、9、13、14、15、17、18也是送分题.对中等生而言,也有发挥的余地,比如理科第7题(文科第11题)可以用等比定理直接求解,也可以分成椭圆和双曲线求解,不同的思考可以得到不同的路径,可以反映学生的差异,再比如文科第9题也是有非常多的方法入手的。还有,理科8、9、18、19题,文科0、11、15、19、20、21等等是中档题,有利于中等生发挥。

2011年高考试卷是在了解学生学习状况的基础上命制的,无疑有利于中学数学教学,有利于实施素质教育。我们认为,2012年高考数学福建省的试卷命题趋势总体还是应该偏重于中等生,也让好生和差生都有自己的空间,如此,便不会偏离以人为本的思路。

在高考复习中怎样贯彻落实以人为本的指导思想?

以三角函数复习为例,基于三角函数高考试题的命题特点和考生的各种不同情况,三角函数应该因人而异,做到因材施教,有效备考,对各个不同层次学生要有不同的备考目标和知能定位。

1、对于体育艺术类等对数学成绩不要求太高的考生,备考复习要注重“引导挖掘,寻找入口,尽能得分”。对于他们来讲,三角函数内容是其最主要的得分点之一,但不能奢望其得高分。复习备考时教师不能简单地告知解题方法,而应引导学生如何挖掘题目条件,找到解题入口(尽管对其他层次学生来讲是非常简单的),让其体会到熟记特殊角的三角函数值,正弦型函数的基本性质,同角三角函数、正余弦定理等对于解题第一步有重要的作用,尽可能用相关知识点尝试解题.

2、对于中等生,备考复习要注重“会而要全,严密规范,力争满分”。绝大部分学生解决三角函数解答题时都能很快找到解题方法,但由于解题不够规范、思维不够严密和计算不够细心造成失误,如忽略角的范围而有多解或漏解现象,三角恒等变形(包括诱导公式,同角三角函数关系和两角和与差的正余弦公式)公式出错,以及数值计算失误.对于这部分学生重点要放在错因分析上,一是要强调解题步骤的规范,二是要强调书写的规范,三是要求学生养成认真、准确、快速计算的好习惯.切实做到会而要全,严密规范,力争满分.

3、对于优等生,备考复习要注重“会而要优,提高效率,确保满分”.对优等生而言,三角函数内容是较为简单的,因此对他们应将目标设定为“没满分就不合格”,特别要强调计算方法的优化和准确性,提高解题效率。只有经过这种严格的要求,才能促使他们改变粗心的毛病,做到在这一内容考查时不失一分。

为什么在高考复习中要以本为本?

为什么要以本为本,套用一句古话:“书中自有考题目,书中自有解题术,书中自有言如玉”。

1、 书中自有考题目

从多年来,特别是2011年全国各地高考数学试题可以明显看出,不少试题来源于课本,是由课本例题或习题加工而来,而有的题目从题型上看几乎就是教科书中典型例题或习题的照搬。

2、书中自有解题术

课本是解题能力的基本生长点,例如阅读能力的培养只能通过阅读来培养,而课本是培养阅读能力的基本素材。高考复习就是应试教学,应试教学的一个目的就在于形成一些模型,把它印记在考生的头脑里,以保证在相应的情境中快速提取,这是对的。问题是,当我们把一切归结为题型教学,把注意力集中在归纳为每一类题目的各种方法时,也必然会遮蔽数学的一些基本东西,甚至是数学的来龙去脉和数学的本质,

数学高考,不可或缺的当然是一些重要结论和基本方法,有一些结论被命名为性质、定理或公式,有些结论只是一道例题或习题,这些结论本身或者推广常常被某一情境隐藏着,成为别出心裁的高考题。只有熟悉课本,才能快速识别它的原型,从而简缩思维过程。在解客观题时,会因这些结论减少工作量;在解解答题时,它也是探寻解题思路、进行合情推理的依据.还有,—些重要的数学思想,考生对知识的直观认识,都是隐含在课本中的。

3、书中自有言如玉

高考复习的重要任务是梳理知识,让知识成为系统。比如,知识框图、知识列表,问题是,他们凭什么得到?当然,教师可以把这些直接告诉给考生,但直接听来的能内化为考生的认知结构吗?最好的方式是让考生自主获得,这些金玉良言都隐藏在课本当中,这实际上是一个重温学习经历的过程,重温课本的过程,也是一个把课本由厚读薄的过程。

数学高考,还需要规范地作答。那么,由谁来示范呢?哪些定理不能直接套用,哪些过程不能省略,哪些表述不能随意,哪些符号不被承认,这些都可以而且只能依据课本。关于解题的表达方式,应以课本为标准。很多复习资料中关键步骤的省略、符号的滥用、语言的随意性和图解法的泛化等,都是不可取的,应通过课本来规范,需要通过课本来正本清源。

三角恒等变换难度降低,为什么考生的得分率仍不高?

三角恒等变换,试题的复杂程度较之以前已明显降低,而考生的作答情况则随着试题变得简单而越来越不尽如人意,这多少有点费解的事实告诉我们,因为考题简单化的趋势导致了模拟题的简单套用.考题简单了,模拟题当然要随之简单,这是无可厚非的。问题不在这里,而在于模拟题的简单使考生忽略了三角公式推导的过程,这个过程是不该忽略的,只有以本为本,才能补回这种缺失。

三角本来无难度,为何未得高分数?

基本概念不理解,混淆特殊角弧度。

未能判定角范围,符号难断正或负。

三变三用欠灵活,重要公式记不住。

来龙去脉不清楚,生搬硬套怎应付?

恒等图象两变换,少用数形相辅助。

不依条件选定理,斜三角形解有误。

奉劝考生抓基础,反思总结多省悟。

怎样理解回归课本?

回归课本绝不是“烫剩饭”,而是通过“回归”,来不断地清晰和把握数学知识结构,不断地形成和完善对数学思想方法的认识作理解,不断地提升综合应用能力,回归课本可以用四个字概括:梳、发、编、变。

(1)梳——梳理知识,理清头绪。梳理出有哪些重要概念?有几条重要定理(公式)?

翻开教材,可以重温学习的历程,回忆学习的情节。比如在细读教材中,要形成这样的几种意识:空集意识、定义域优先意识、讨论公比是否为1的意识、讨论判别式的意识(尤其在直线与圆锥曲线联立求解得到的关键方程中)等;在理解概念时,一定要咬文嚼字,注意细节。如斜率的定义:只有在倾斜角不是90°的直线,它的倾斜角的正切才叫做这条直线的斜率,很多考生常常忘掉这一点。

(2)发——发现规律,发展思维。再现重点知识的形成和发展过程,特别是在这一过程中所产生的数学思想方法,加以提炼。在复习每一课题时,必须联系课本中的相应部分。不仅要弄懂课本提供的知识和方法,还要弄清定理、公式和推导过程和例题的求解过程,揭示例、习题之间的联系及其变换。

在复习训练的过程中,我们会积累很多解题经验和方法,其中不乏一些规律性的东西,要注意从课本中探寻这些经验、方法和规律的依据。

(3)编——编织网络,寻求交汇。理清前后知识结构,将整个知识体系初步建立框架,并有意识地强化知识的横纵联系,形成初步的网络。

要深刻、渗透地去理解和把握教材所蕴涵的数学思想、数学方法和数学精髓,提炼教材中的通性、通法,并加强总结和应用,把它们串成线、形成链,变式拔高,把散乱的珍珠串成精美的项链,使其得以“升华”。

(4)变——变换角度,变式训练。做透课本中的典型例题和习题,要善于用联系的观点研究课本题的变式题。注意通过对课本题目改变设问方式、增加或减少变动因素和必要的引申、推广来扩大题目的训练功能。现行课本一般是常规解答题,应从选择、填空、探索等题型功能上进行思考,并从背景、现实、来源等方面加以解释。

每年的高考试题中都有一些“似曾相识题”,这种“似曾相识题”实际上就是“变式题”。对于一些内涵丰富的习题,考虑一题多变,可以培养考生思维的灵活性及多种应变能力。高考命题人员只允许带现行课本,由此来改编,而不能带任何教辅材料,这说明研究教材的例(习)题具有非常重要的意义。

为什么高考复习要立足于基本?

高考的每一道题都是基本题,80%是纯粹的基本题,20%是烟幕弹笼罩着的基本题。所谓难题,就是在基本题上或多或少地加了些迷惑人的伪装,挖了些陷阱。不会学习的学生盲目做难题,基础永远也不会好;会学习的学生遇到难题,透过现象看本质,云开雾散。

数学考试成绩“不倒翁”的成功秘诀不是把每次考试的难题全部做对,而是在所有基本题中档题上做得滴水不漏。高手之间的较量在于细节,在于基本。高考命题专家构思高考题的思路经常是在基本内容与基本内容之间的交汇点上移植变通、串线整合上大做文章。每年高考数学的压轴难题层层解剖后,都烙有基本内容的影子,都能与基本的知识考点挂上钩。

数学基本知识是高考数学成绩提升的瓶颈,只有梳理知识 形成网络,对数学基本知识有深刻理解和领会时,才能突破这一瓶颈,逐步形成基本技能,实现能力的提升。正如老子所言:“天下之难作于易,天下之大作于细”。

在高考复习中,好多同学都是一听就懂,一看就会,但是一做就错,一考就糊。什么原因呢?

这是因为没有达到应有的思维层次。由于学习有三个能力层次:一是“懂”,只要教师讲解清楚,问题选取适当,同学认真投入,一般没有问题,这是思维的较低层次;二是“会”,也就是在懂的基础上能够模仿,需要在适量的练习中得以体现,相对来说思维上了一个台阶;三是“悟”,要悟出解决问题的道理,能够总结出解题的规律,并且能够灵活应用它解决其他问题,从本质上把握解决问题的思维方法,这是思维的高层次,也是我们追求的目标。正如古人云:“教之道在于度,学之道在于悟”。

不注重数学本质,只对表面的现象感兴趣,一味地通过做大量的模拟试卷,重复操练,是不能提高数学素质的.在高考复习中,只有加强数学知识内在的联系,抓住数学的本质,突出概念的理解和运用,突出思维能力的培养,才能真正提高我们的数学素质.在高考复习中应做到“三性”,即对知识理解的深刻性、掌握的全面性、运用的灵活性,以使我们形成综合性的知识体系。

为什么数学复习要重视记忆力的培养?

由于数学学科本身的特点,同学们普遍重视强化自己的计算、逻辑推理、思维、空间想象、观察、操作、分析、建模等能力,忽视了对自己记忆力的开放培养,甚至于有的同学把记忆力排除在素质范畴之外,只注意知识的学习,不注意记忆方法的掌握。在学习数学时,不仅公式需要记忆,数学中的定义、公理、定理、性质等等需要在理解的基础上进行记忆,常见的解题方法和技巧也需要我们记忆。还有一些典型的例题、习题,本身也非常重要,将这些例习题进一步提炼,就可以成为非常重要的“二手结论”,熟悉这些结论,对考生提高解题速度是大有好处的。

提高记忆的方法有很多:

例如,一元一次不等式的解集:“同大大,同小小,大小小大夹起来,大大小小解不了”。

又如,线面平行判定与性质定理,很多同学老记不住,不妨用《送别》的曲谱填上歌词:

“平面外,一直线,平行面内线,可以推出该直线,平行此平面。

一直线,平行面,过线作平面,可以推出面交线,平行该直线”。

怎样提高复习的质量?

在平时的学习中,你肯定碰到过大量的小结论,这些小结论虽然比定理公式的地位低,但极大地丰富了原有的定理和公式,非常管用,所以你应该按照课本目录顺序,分别认真收集,集中记忆80个以上。

高考数学复习时,不应只是把所学过的数学知识简单地重复,而应该把基础知识从整体上按数学的逻辑结构、知识之间的内在联系,进行整理,还要把平时所学的各个单元的局部的分散的零碎知识,解题的思想方法,解题的规律进行数学联结,并以浓缩成为精华,储存在大脑中,在考试中及时的展开运用,从而能从整体上,系统上,网络上把握知识、思想和方法.学习的规律是“联系帮助理解”,“联系帮助记忆”。正如潘长江的一句名言:“浓缩的都是精华”。

高考数学复习中怎样克服“会而不对,对而不全,全而不优,优而不美”的现象?

“会而不对,对而不全,全而不优,优而不美”是高考中常见的现象,这是主要由于考生审题能力薄弱,解题粗心大意,书写缺乏规范所导致的。因此,在平时训练中要培养科学严谨的学习态度,善于关注学习细节,学会准确表述数学概念、原理,规范书写算法、推理、符号等,是保障高考长分的基础。每份高考数学试卷中肯定有相当数量的体现高考要求与命题理念、凝聚命题者经验与智慧的原创题,这类题情境陌生、形式新颖、结构精巧、他们根本不可能从容不迫、潇洒自如地投入解题活动,不可能花过多的时间和精力去刻意求简、刻意求新。成功的希望完全依赖于平时在知识、技能、思维、心理等方面的积淀,也就是平时的训练有素,要达到“平时的训练有素”,要做到以下四点:

1、要做好规范训练,就要狠抓“三功”,即图功、算功、审读功。

2、注意思维过程的暴露。

3、狠抓规范意识的养成。

4、注意纠错后的补偿训练。

由于时间的关系,今天的访谈就快要结束了,非常感谢周老师,在节目的最后请老师跟考生们讲几句话。明天做客网站的是福州高级中学历史高级教师梁敬党,欢迎考生及家长们踊跃提问

高中数学课程的目标是:“理解基本的数学概念,数学结论的本质,了解概念产生的背景,应用体会其中所蕴含的数学思想和方法”。这既是课程目标,也是高考命题的目标,更是我们高考复习的目标。所以,以人为本,以本为本,立足基本,求实悟本是我们高三复习的成功的根本。

江苏成人高考专升本《高等数学一》考试大纲?

成考快速报名和免费咨询: 本大纲适用于工学理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考生。  总要求考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。

本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。

复习考试内容

一、函数、极限和连续

(一)函数

1.知识范围

(1)函数的概念

函数的定义 函数的表示法 分段函数 隐函数

(2)函数的性质

单调性 奇偶性 有界性 周期性

(3)反函数

反函数的定义 反函数的图像

(4)基本初等函数

幂函数 指数函数 对数函数 三角函数 反三角函数

(5)函数的四则运算与复合运算

(6)初等函数

2.要求

(1)理解函数的概念。会求函数的表达式、定义域及函数值。会求分段函数的定义域、函数值,会作出简单的分段函数的图像。

(2)理解函数的单调性、奇偶性、有界性和周期性。

(3)了解函数 与其反函数 之间的关系(定义域、值域、图像),会求单调函数的反函数。

(4)熟练掌握函数的四则运算与复合运算。

(5)掌握基本初等函数的性质及其图像。

(6)了解初等函数的概念。

(7)会建立简单实际问题的函数关系式。

(二)极限

1.知识范围

(1)数列极限的概念

数列 数列极限的定义

(2)数列极限的性质

唯一性 有界性 四则运算法则 夹逼定理 单调有界数列极限存在定理

(3)函数极限的概念

函数在一点处极限的定义 左、右极限及其与极限的关系 趋于无穷 时函数的极限 函数极限的几何意义

(4)函数极限的性质

唯一性 四则运算法则 夹通定理

(5)无穷小量与无穷大量

无穷小量与无穷大量的定义 无穷小量与无穷大量的关系 无穷小量的性质 无穷小量的阶

(6)两个重要极限

2.要求

(1)理解极限的概念(对极限定义中“ ”、“ ”、“ ”等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解极限的有关性质,掌握极限的四则运算法则。

(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。

(4)熟练掌握用两个重要极限求极限的方法。

(三)连续

1.知识范围

(1)函数连续的概念

函数在一点处连续的定义 左连续与右连续 函数在一点处连续的充分必要条件 函数的间断点及其分类

(2)函数在一点处连续的性质

连续函数的四则运算 复合函数的连续性 反函数的连续性

(3)闭区间上连续函数的性质

有界性定理 最大值与最小值定理 介值定理(包括零点定理)

(4)初等函数的连续性

2.要求

(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。

(2)会求函数的间断点及确定其类型。

(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。

(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。

二、一元函数微分学

(一)导数与微分

1.知识范围

(1)导数概念

导数的定义 左导数与右导数 函数在一点处可导的充分必要条件 导数的几何意义与物理意义 可导与连续的关系

(2)求导法则与导数的基本公式

导数的四则运算 反函数的导数 导数的基本公式

(3)求导方法

复合函数的求导法 隐函数的求导法 对数求导法 由参数方程确定的函数的求导法 求分段函数的导数

(4)高阶导数

高阶导数的定义 高阶导数的计算

(5)微分

微分的定义 微分与导数的关系 微分法则 一阶微分形式不变性

2.要求

(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。

(2)会求曲线上一点处的切线方程与法线方程。

(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。

(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。

(5)理解高阶导数的概念,会求简单函数的 阶导数。

(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。

(二)微分中值定理及导数的应用

1.知识范围

(1)微分中值定理

罗尔(Rolle)定理 拉格朗日(Lagrange)中值定理

(2)洛必达(L‘Hospital)法则

(3)函数增减性的判定法

(4)函数的极值与极值点 最大值与最小值

(5)曲线的凹凸性、拐点

(6)曲线的水平渐近线与铅直渐近线

2.要求

(1)理解罗尔定理、拉格朗日中值定理及它们的几何意义。会用罗尔定理证明方程根的存在性。会用拉格朗日中值定理证明简单的不等式。

(2)熟练掌握用洛必达法则求各种型未定式的极限的方法。

(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简单的不等式。

(4)理解函数极值的概念。掌握求函数的极值、最大值与最小值的方法,会解简单的应用问题。

(5)会判断曲线的凹凸性,会求曲线的拐点。

(6)会求曲线的水平渐近线与铅直渐近线。

(7)会作出简单函数的图形。

三、一元函数积分学

(一)不定积分

1.知识范围

(1)不定积分

原函数与不定积分的定义 原函数存在定理 不定积分的性质

(2)基本积分公式

(3)换元积分法

第1换元法(凑微分法) 第二换元法

(4)分部积分法

(5)一些简单有理函数的积分

2.要求

(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理。

(2)熟练掌握不定积分的基本公式。

(3)熟练掌握不定积分第1换元法,掌握第二换元法(限于三角代换与简单的根式代换)。

(4)熟练掌握不定积分的分部积分法。

(5)会求简单有理函数的不定积分。

(二)定积分

1.知识范围

(1)定积分的概念

定积分的定义及其几何意义 可积条件

(2)定积分的性质

(3)定积分的计算

变上限积分 牛顿—莱布尼茨(Newton-Leibniz)公式 换元积分法 分部积分法

(4)无穷区间的广义积分

(5)定积分的应用

平面图形的面积 旋转体体积 物体沿直线运动时变力所作的功

2.要求

(1)理解定积分的概念及其几何意义,了解函数可积的条件。

(2)掌握定积分的基本性质。

(3)理解变上限积分是变上限的函数,掌握对变上限定积分求导数的方法。

(4)熟练掌握牛顿—莱布尼茨公式。

(5)掌握定积分的换元积分法与分部积分法。

(6)理解无穷区间的广义积分的概念,掌握其计算方法。

(7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体体积。

会用定积分求沿直线运动时变力所作的功。

四、向量代数与空间解析几何

(一)向量代数

1.知识范围

(1)向量的概念

向量的定义 向量的模 单位向量 向量在坐标轴上的投影 向量的坐标表示法 向量的方向余弦

(2)向量的线性运算

向量的加法 向量的减法 向量的数乘

(3)向量的数量积

二向量的夹角 二向量垂直的充分必要条件

(4)二向量的向量积 二向量平行的充分必要条件

2.要求

(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。

(2)熟练掌握向量的线性运算、向量的数量积与向量积的计算方法。

(3)熟练掌握二向量平行、垂直的充分必要条件。

(二)平面与直线

1.知识范围

(1)常见的平面方程

点法式方程 一般式方程

(2)两平面的位置关系(平行、垂直和斜交)

(3)点到平面的距离

(4)空间直线方程

标准式方程(又称对称式方程或点向式方程)一般式方程 参数式方程

(5)两直线的位置关系(平行、垂直)

(6)直线与平面的位置关系(平行、垂直和直线在平面上)

2.要求

(1)会求平面的点法式方程、一般式方程。会判定两平面的垂直、平行。会求两平面间的夹角。

(2)会求点到平面的距离。

(3)了解直线的一般式方程,会求直线的标准式方程、参数式方程。会判定两直线平行、垂直。

(4)会判定直线与平面间的关系(垂直、平行、直线在平面上)。

(三)简单的二次曲面

1.知识范围

球面 母线平行于坐标轴的柱面 旋转抛物面 圆锥面 椭球面

2.要求

了解球面、母线平行于坐标轴的柱面、旋转抛物面、圆锥面和椭球面的方程及其图形。

五、多元函数微积分学

(一)多元函数微分学

1.知识范围

(1)多元函数

多元函数的定义 二元函数的几何意义 二元函数极限与连续的概念

(2)偏导数与全微分

偏导数 全微分 二阶偏导数

(3)复合函数的偏导数

(4)隐函数的偏导数

(5)二元函数的无条件极值与条件极值

2.要求

(1)了解多元函数的概念、二元函数的几何意义。会求二次函数的表达式及定义域。了解二元函数的极限与连续概念(对计算不作要求)。

(2)理解偏导数概念,了解偏导数的几何意义,了解全微分概念,了解全微分存在的必要条件与充分条件。

(3)掌握二元函数的一、二阶偏导数计算方法。

(4)掌握复合函数一阶偏导数的求法。

(5)会求二元函数的全微分。

(6)掌握由方程 所确定的隐函数 的一阶偏导数的计算方法。

(7)会求二元函数的无条件极值。会用拉格朗日乘数法求二元函数的条件极值。

(二)二重积分

1.知识范围

(1)二重积分的概念

二重积分的定义二重积分的几何意义

(2)二重积分的性质

(3)二重积分的计算

(4)二重积分的应用

2.要求

(1)理解二重积分的概念及其性质。

(2)掌握二重积分在直角坐标系及极坐标系下的计算方法。

(3)会用二重积分解决简单的应用问题(限于空间封闭曲面所围成的有界区域的体积、平面薄板质量)。

六、无穷级数

(一)数项级数

1.知识范围

(1)数项级数

数项级数的概念 级数的收敛与发散 级数的基本性质 级数收敛的必要条件

(2)正项级数收敛性的判别法

比较判别法 比值判别法

(3)任意项级数

交错级数 绝对收敛 条件收敛 莱布尼茨判别法

2.要求

(1)理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。

(2)掌握正项级数的比值判别法。会用正项级数的比较判别法。

(3)掌握几何级数、调和级数与级数的收敛性。

(4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。

(二)幂级数

1.知识范围

(1)幂级数的概念

收敛半径 收敛区间

(2)幂级数的基本性质

(3)将简单的初等函数展开为幂级数

2.要求

(1)了解幂级数的概念。

(2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。

(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。

(4)会运用麦克劳林(Maclaurin)公式,将一些简单的初等函数展开为幂级数。

七、常微分方程

(一)一阶微分方程

1.知识范围

(1)微分方程的概念

微分方程的定义 阶 解 通解 初始条件 特解

(2)可分离变量的方程

(3)一阶线性方程

2.要求

(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。

(2)掌握可分离变量方程的解法。

(3)掌握一阶线性方程的解法。

(二)可降价方程

1.知识范围

(1) 型方程

(2) 型方程

2.要求

(1)会用降阶法解 型方程。

(2)会用降阶法解 型方程。

(三)二阶线性微分方程

1.知识范围

(1)二阶线性微分方程解的结构

(2)二阶常系数齐次线性微分方程

(3)二阶常系数非齐次线性微分方程

2.要求

(1)了解二阶线性微分方程解的结构。

(2)掌握二阶常系数齐次线性微分方程的解法。

(3)掌握二阶常系数非齐次线性微分方程的解法。

考试形式及试卷结构

试卷总分:150分

考试时间:150分钟

考试方式:闭卷,笔试

试卷内容比例:

函数、极限和连续 约15%

一元函数微分学 约25%

一元函数积分学 约20%

多元函数微积分(含向量代数与空间解析几何) 约20%

无穷级数 约10%

常微分方程 约10%

试卷题型比例:

选择题 约15%

填空题 约25%

解答题 约60%

试题难易比例:

容易题 约30%

中等难度题 约50%

较难题 约20%

成考有疑问、不知道如何总结成考考点内容、不清楚成考报名当地政策,点击底部咨询官网,免费领取复习资料: style="font-size: 18px;font-weight: bold;border-left: 4px solid #a10d00;margin: 10px 0px 15px 0px;padding: 10px 0 10px 20px;background: #f1dada;">2006年高考的数学考试大纲

2006年高考大纲——理科数学

Ⅰ.考试性质

普通高等学校招生全国统一考试是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试,高等学校根据考生的成绩,按已确定的招生计划,德、智、体、全面衡量,择优录取,因此,高等应有较高的信度、效度,必要的区分度和适当的难度.

Ⅱ.考试要求

《 2006年普通高等学校招生全国统一考试大纲(理科)》中的数学科部分,根据普通高等学校对新生文化素质的要求,依据国家教育部2002年颁布的《全日制普通高级中学课程计划》和《全日制普通高级中学数学教学大纲》的必修课与选修Ⅱ的教学内容,作为理工农医类高考数学科试题的命题范围

数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则确立以能力立意命题的指导思想.将知识、能力与素质融为一体,全面检测考生的数学素养。

数学科考试要发挥数学作为基础学科的作用,既考查中学数学知识和方法,又考查考生进入高校继续学习的潜能。

一、考试内容的知识要求、能力要求和个性品质要求

1.知识要求

知识是指《全日制普通高级中学数学教学大纲》所规定的教学内容中的数学概念、性质、法则、公式、公理、定理以及其中的数学思想和方法。

对知识的要求,依次为了解、理解和拿握、灵活和综合运用三个层次。

(1)了解:要求对所列知识的含义有初步的、感性的认识知道这一知识内容是什么,并能(或会)在有关的问题中识别它。

(2)理解和掌握要求对所列知识内容有较深刻的理论认识,能够解释、举例或变形、推断,并能利用知识解决有关问题。

(3)灵活和综合运用二要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题。

2.能力要求

能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识。

(1)思维能力:会对问题或资料进行戏察、比较、分析、综合、抽象与概括;会用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述。

数学是一门思维的科学,思维能力是数学学科能力的核心数学思维能力是以数学知识为素材,通过空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明和模式构建等诸方面,对客观事物中的空间形式、数量关系和数学模式进行思考和判断,形成和发展理性思维,构成数学能力的主体。

(2)运算能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。

运算能力是思维能力和运算技能的结合。运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形对几何图形各几何量的计算求解等。运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力、也包括在实施运算过程中遇到障碍而调整运算的能力。

(3)空间想象能力:跟据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合与变换;会运用图形与图表等手段形象地揭示问题的本质。

空间想象能力是对空间形式的观察、分析、抽象的能力。主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言,以及对图形添加辅助图形或对图形进行各种变换.对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.

(4)实践能力:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表述和说明.

实践能力是将客观事物数学化的能力.主要过程是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决.

(5)创新意识:对新颖的信息、情境和设问,选择有效的方法和手段分析信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.

创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.

3.个性品质要求

个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义.

要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.

二、考查要求

数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识在各自的发展过程中的纵向联系和各部分知识之间的横向联系.要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的结构框架.

(l)对数学基础知识的考查,要既全面又突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.

(2)对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想和方法的理解;要从学科整体意义和思想价值立意,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.

(3)对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题人手,把握学科的整体意义,用统一的数学观点组织材料.侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.

对能力的考查,以思维能力为核心,全面考查各种能力,强调综合性、应用性,并切合考生实际.对思维能力的考查贯穿于全卷,重点体现对理性思维的考查,强调思维的科学性、严谨性、抽象性.对运算能力的考查主要是对算理和逻辑推理的考查,考查时以代数运算为主,同时也考查估算、简算.对空间想象能力的考查,主要体现在对文字语言、符号语言及图形语言.三种语言的互相转化,表现为对图形的识别、理解和加工,考查时要与运算能力、逻辑思维能力相结合.

(4)对实践能力的考查主要采用解决应用问题的形式.命题时一要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合我国中学数学教学的实际,考虑学生的年龄特点和实践经验,使数学应用问题的难度符合考生的水平.

(5)对创新意识的考查是对高层次理性思维的考查.在考试中创设比较新颖的问题情境,构造有一定深度和广度的数学问题,要注重问题的多样化,体现思维的发散性.精心设计考查数学主体内容,体现数学素质的试题;反映数、形运动变化的试题;研究型、探索型、开放型的试题.

数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,注重展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.

III.考试内容

1.平面向量

考试内容:

向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离.平移.

考试要求:

(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念.

(2)掌握向量的加法和减法.

(3)掌握实数与向量的积,理解两个向量共线的充要条件.

(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.

(6)掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式.

2.集合、简易逻辑

考试内容:

集合.子集.补集.交集.并集.

逻辑联结词.四种命题.充分条件和必要条件.

考试要求:

(1)理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.

(2)理解逻辑联结词“或”、“且”、“非”的含义.理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.

3.函数

考试内容:

映射.函数.函数的单调性.奇偶性.

反函数.互为反函数的函数图像间的关系.

指数概念的扩充.有理指数幂的运算性质.指数函数.

对数.对数的运算性质.对数函数.

函数的应用.

考试要求:

(1)了解映射的概念,理解函数的概念.

(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.

(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.

(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.

(5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质.

(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.

4.不等式

考试内容:

不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式.

考试要求:

(1)理解不等式的性质及其证明.

(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.

(3)掌握分析法、综合法、比较法证明简单的不等式.

(4)掌握简单不等式的解法.

(5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│.

5.三角函数

考试内容:

角的概念的推广.弧度制.

正弦定理.余弦定理.斜三角形解法.

考试要求:

(1)理解任意角的概念、弧度的意义.能正确地进行弧度与角度的换算.

(2)掌握任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义.掌握同角三角函数的基本关系式.掌握正弦、余弦的诱导公式.了解周期函数与最小正周期的意义.

(3)掌握两角和与两角差的正弦、余弦、正切公式.掌握二倍角的正弦、余弦、正切公式.

(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.

(6)会由已知三角函数值求角,并会用符号arcsin x、arccos x、arctanx表示.

(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.

高考的一卷,二卷是什么意思

一卷、二卷是教育部命题的,一般是一卷是汉族省份和经济稍微好一些的省份用,二卷是少数民族省份和经济比较差的省份用。

教育部统一命题和全国2卷的高考都是按照同一考试大纲命制的,两卷的试题结构基本相同,区别不大。这两篇论文的难度系数有些不同。该研究与分别使用第一册和第二册国家卷的省份的考试没有差别和影响。

扩展资料:

从论文使用地区的角度来看,论文1的地区高考竞争压力较大,而论文2的地区高考竞争压力较小。论文1主要适用于教育比较发达的东部和中部省份,而论文2主要适用于一些教育不发达的西部省份。

从全国卷的难易程度来看,全国卷的总体难易程度为>全国卷2;单项难度:语文:论文1 =论文2;(2)数学:卷一卷二的客观题都送去打分,难度相等;中文:差别明显,第一卷难度>第二卷;(4)小结:第一卷物理难。

文章标签: # 函数 # 数学 # 要求