您现在的位置是: 首页 > 招生信息 招生信息

高考数学椭圆双曲线题目,高考数学椭圆双曲线

tamoadmin 2024-07-15 人已围观

简介1.哪位大事能给我归纳一下高中数学解析几何啊,椭圆,双曲线,抛物线的知识.2.高中数学椭圆与双曲线?抛物线3.高中数学 双曲线 椭圆 性质 公式 定理 a b c 含义4.椭圆公式和双曲线公式推导5.加急! 高考数学的抛物线,双曲线,椭圆和圆,有什么规律和定理,做题思路之类的?6.高中数学题2道,椭圆双曲线,向量我们把平面内与两个定点F1,F2的距离的差的绝对值等于一个常数(常数为2a)的轨迹称为

1.哪位大事能给我归纳一下高中数学解析几何啊,椭圆,双曲线,抛物线的知识.

2.高中数学椭圆与双曲线?抛物线

3.高中数学 双曲线 椭圆 性质 公式 定理 a b c 含义

4.椭圆公式和双曲线公式推导

5.加急! 高考数学的抛物线,双曲线,椭圆和圆,有什么规律和定理,做题思路之类的?

6.高中数学题2道,椭圆双曲线,向量

高考数学椭圆双曲线题目,高考数学椭圆双曲线

我们把平面内与两个定点F1,F2的距离的差的绝对值等于一个常数(常数为2a)的轨迹称为双曲线。 (平面内到两定点的距离差的绝对值为定长的点的轨迹叫做双曲线)即:│PF1-PF2│=2a定义1:平面内,到两个定点的距离之差的绝对值为常数(小于这两个定点间的距离[1])的点的轨迹称为双曲线。定点叫双曲线的焦点。定义2:平面内,到给定一点及一直线的距离之比为常数e(e>1,即为双曲线的离心率)的点的轨迹称为双曲线。定点叫双曲线的焦点,定直线叫双曲线的准线。双曲线准线的方程为x=±a?/c(焦点在x轴上)或y=±a?/c(焦点在y轴上)。定义3:一平面截一圆锥面,当截面与圆锥面的母线不平行,且与圆锥面的两个圆锥都相交时,交线称为双曲线。定义4:在平面直角坐标系中,二元二次方程F(x,y)=ax2+bxy+cy2+dx+ey+f=0满足以下条件时,其图像为双曲线。a、b、c不都是零.第一定义平面内与两定点F1、F2的距离的和等于常数2a(2a>|F1F2|)的动点P的轨迹叫做椭圆。

?椭圆定义说明

即:│PF1│+│PF2│=2a其中两定点F1、F2叫做椭圆的焦点,两焦点的距离│F1F2│=2c<2a叫做椭圆的焦距。P 为椭圆的动点。椭圆截与两焦点连线重合的直线所得的弦为长轴,长为2a椭圆截垂直平分两焦点连线的直线所得弦为短轴,长为2b?第二定义平面内到定点F的距离与到定直线的距离之比为常数e(即椭圆的离心率,e=c/a)的点的集合(定点F不在定直线上,该常数为小于1的正数) 其中定点F为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是x=±a^2/c[焦点在X轴上];或者y=±a^2/c[焦点在Y轴上])。其他定义根据椭圆的一条重要性质:椭圆上的点与椭圆长轴两端点连线的斜率之积是定值 定值为e^2-1 可以得出:在坐标轴内,动点(x,y)到两定点(a,0)(-a,0)的斜率乘积等于常数m(-1<m<0)注意:考虑到斜率为零时不满足乘积为常数,所以x=±a无法取到,即该定义仅为去掉两个点的椭圆。[1]椭圆也可看做圆按一定方向作压缩或拉伸一定比例所得图形。2几何性质基本性质1、范围:焦点在x轴上-a≤x≤a -b≤y≤b;焦点在y轴上-b≤x≤b -a≤y≤a[2]2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。3、顶点:(a,0)(-a,0)(0,b)(0,-b)4、离心率:e=c/a 或 e=√1-b^2/a^25、离心率范围 0<e<16、离心率越大椭圆就越扁,越小则越接近于圆7、焦点(当中心为原点时)(-c,0),(c,0)或(0,c),(0,-c)切线法线定理1:设F1、F2为椭圆C的两个焦点,P为C上任意一点。若直线AB切椭圆C于点P,且A和B在直线上位于P的两侧,则∠APF1=∠BPF2。定理2:设F1、F2为椭圆C的两个焦点,P为C上任意一点。若直线AB为C在P点的法线,则AB平分∠F1PF2。上述两定理的证明可以查看参考资料。[3]平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准?

哪位大事能给我归纳一下高中数学解析几何啊,椭圆,双曲线,抛物线的知识.

1,设直线方程为y=ax+b,与圆锥曲线方程联立。把y带入,得到一个关于y和x的二元方程。

2,求根公式,或者韦达定理,或者弦长公式,两点间距离公式,看求什么。

3,几何关系,比如到角公式,或者垂直关系等。或者三角形相似。画图的时候一定要画上准线,想到第二定义。

4,利用点差法,一些题目可用。

5,与导数结合的题目,通过求导求极值。

我只能想到这些啦。。。关键是不要怕算,不要怕结果复杂。

高中数学椭圆与双曲线?抛物线

(一)椭圆及其标准方程

1. 椭圆的定义:椭圆的定义中,平面内动点与两定点F1、F2的距离的和大于|F1F2|这个条件不可忽视.若这个距离之和小于| F1F2|,则这样的点不存在;若距离之和等于

| F1F2|,则动点的轨迹是线段F1F2

2.椭圆的标准方程:x?/a?+y?/b?=1(a>b>0),y?/a?+x?/b?=1(a>b>0).

3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果x?项的分母大于y?项的分母,则椭圆的焦点在x轴上,反之,焦点在y轴上.

4.求椭圆的标准方程的方法:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.

(二)椭圆的简单几何性质

1. 椭圆的几何性质:设椭圆方程为x?/a?+y?/b?=1(a>b>0).

⑴ 范围: -a≤x≤a,-b≤x≤b,所以椭圆位于直线x=±a和y=±b所围成的矩形里. ⑵ 对称性:分别关于x轴、y轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.

⑶ 顶点:有四个A1(-a,0)、A2(a,0)B1(0,-b)、B2(0,b).

线段A1A2,B1B2分别叫做椭圆的长轴和短轴.它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.

⑷ 离心率:椭圆的焦距与长轴长的比e=c/a叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e<1.e越接近于1时,椭圆越扁;反之,e越接近于0时,椭圆就越接近于圆.

2.椭圆的第二定义

⑴ 定义:平面内动点M与一个顶点的距离和它到一条定直线的距离的比是常数e=c/a(e<1时,这个动点的轨迹是椭圆.

⑵ 准线:根据椭圆的对称性,x?/a?+y?/b?=1(a>b>0)的准线有两条,它们的方程为x=±(a?/c).对于椭圆y?/a?+x?/b?=1(a>b>0)的准线方程,只要把x换成y就可以了,即y=

±(a?/c).

3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.

设F1(-c,0),F2(c,0)分别为椭圆x?/a?+y?/b?=1(a>b>0)的左、右两焦点,M(x,y)是椭圆上任一点,则两条焦半径长分别为|MF1|=a+ex,|MF2|=a+ex.

椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.

椭圆的四个主要元素a、b、c、e中有a?=b?+c?,e=c/a两个关系,因此确定椭圆的标准方程只需两个独立条件.

4.椭圆的参数方程

椭圆x?/a?+y?/b?=1(a>b>0)的参数方程为x=acosθ,y=bsinθ(θ为参数).

说明:⑴ 这里参数θ叫做椭圆的离心角.椭圆上点P的离心角θ与直线OP的倾斜角α不同:tanα=(b/a)tanθ;

⑵ 椭圆的参数方程可以由方程x?/a?+y?/b?=1与三角恒等式sin?θ+cos?θ=1相比较而得到,所以椭圆的参数方程的实质是三角代换.

5.椭圆的的内外部

(1)点P(x0,y0)在椭圆x?/a?+y?/b?=1(a>b>0)的内部,得出x0?/a?+y0?/b?<1.

(2)点P(x0,y0)在椭圆x?/a?+y?/b?=1(a>b>0)的外部,得出 x0?/a?+y0?/b?>1.

6. 椭圆的切线方程

(1)椭圆x?/a?+y?/b?=1(a>b>0)上一点P(x0,y0)处的切线方程是(x0?x)/a?+(y0?y)/b?=1.

(2)过椭圆x?/a?+y?/b?=1(a>b>0)外一点P(x0,y0)所引两条切线的切点弦方程是(x0?x)/a?+(y0?y)/b?=1.

(3)椭圆x?/a?+y?/b?=1(a>b>0)与直线Ax+By+C=0相切的条件是A?a?+B?b?=c?

(三)双曲线及其标准方程

1.双曲线的定义:平面内与两个定点 、 的距离的差的绝对值等于常数2a(小于|F1F2|)的动点M的轨迹叫做双曲线.在这个定义中,要注意条件2a<|F1F2|,这一条件可以用“三角形的两

边之差小于第三边”加以理解.若2a=|F1F2|,则动点的轨迹是两条射线;若2a>|F1F2|,则无轨迹.若|MF1|<|MF2|时,动点M的轨迹仅为双曲线的一个分支,又若|MF1|>|MF2|时,轨迹为

双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.

2.双曲线的标准方程:x?/a?-y?/b?=1和y?/a?+x?/b?=1(a>0,b>0).这里b?=c?-a?,其中|F1F2|=2c.要注意这里的a、b、c及它们之间的关系与椭圆中的异同.

3.双曲线的标准方程判别方法是:如果x?项的系数是正数,则焦点在x轴上;如果 项的系数是正数,则焦点在y轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大

小来判断焦点在哪一条坐标轴上.

4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.

(四)双曲线的简单几何性质

1.双曲线:x?/a?-y?/b?=1的实轴长为2a,虚轴长为2b,离心率e=c/a>1,离心率e越大,双曲线的开口越大.

2. 双曲线:x?/a?-y?/b?=1的渐近线方程为y=±(b/a)或表示为:x?/a?-y?/b?=0.若已知双曲线的渐近线方程是y=±(m/n)x,即mx±ny=0,那么双曲线的方程具有以下形式:m?x?-

n?y?=k,其中k是一个不为零的常数.

3.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线:x?/a?-y?/b?=1,它的焦点坐标是(-c,0)

和(c,0),与它们对应的准线方程分别是x=-a?/c和x=a?/c.双曲线:x?/a?-y?/b?=1(a>0,b>0)的焦半径公式|PF1|=|e(x+a?/c)|,|PF2|=|e(-x+a?/c)|.

4.双曲线的内外部

(1)点P(x0,y0)在双曲线x?/a?-y?/b?=1(a>0,b>0)的内部,得出x0?/a?-y0?/b?<1.

(2)点P(x0,y0)在双曲线x?/a?-y?/b?=1(a>0,b>0)的外部,得出x0?/a?-y0?/b?>1.

5.双曲线的方程与渐近线方程的关系

(1)若双曲线方程为x?/a?-y?/b?=1得出渐近线方程:x?/a?±y?/b?=0得出y=±(a/b)x.

(2)若渐近线方程为y=±(a/b)x,得出 x?/a?±y?/b?=0,双曲线可设为x?/a?-y?/b?=λ.

(3)若双曲线与x?/a?-y?/b?=1有公共渐近线,可设为x?/a?-y?/b?=λ(λ>0,焦点在x轴上,λ<0,焦点在y轴上).

6. 双曲线的切线方程

(1)双曲线x?/a?-y?/b?=1(a>0,b>0)上一点P(x0,y0)处的切线方程是(x0?x)/a?-(y0?y)/b?=1.

(2)过双曲线x?/a?-y?/b?=1(a>0,b>0)外一点P(x0,y0)所引两条切线的切点弦方程是(x0?x)/a?+(y0?y)/b?=1.

(3)双曲线x?/a?-y?/b?=1(a>0,b>0)与直线Ax+By+C=0相切的条件是A?a?-B?b?=c?.

(五)抛物线的标准方程和几何性质

1.抛物线的定义:平面内到一定点(F)和一条定直线(l)的距离相等的点的轨迹叫抛物线.这个定点F叫抛物线的焦点,这条定直线l叫抛物线的准线.

需强调的是,点F不在直线l上,否则轨迹是过点F且与l垂直的直线,而不是抛物线.

2.抛物线的方程有四种类型:

y?=2px、y?=-2px、x?=2py、x?=-2py.

对于以上四种方程:应注意掌握它们的规律:曲线的对称轴是哪个轴,方程中的该项即为一次项;一次项前面是正号则曲线的开口方向向x轴或y轴的正方向;一次项前面是负号则曲线的开

口方向向x轴或y轴的负方向.

3.抛物线的几何性质,以标准方程y2=2px为例

(1)范围:x≥0;

(2)对称轴:对称轴为y=0,由方程和图像均可以看出;

(3)顶点:O(0,0),注:抛物线亦叫无心圆锥曲线(因为无中心);

(4)离心率:e=1,由于e是常数,所以抛物线的形状变化是由方程中的p决定的;

(5)准线方程x=-p/2;

(6)焦半径公式:抛物线上一点P(x1,y1),F为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p>0):

y?=2px,|PF|=x1+p/2;y?=-2px,|PF|=-x1+p/2

x?=2py,|PF|=y1+p/2;x?=-2py,|PF|=-y1+p/2

(7)焦点弦长公式:对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式.设过抛物线y2=2px(p>O)的焦点F的弦为AB,A(x1,y1),B(x2,y2),AB的倾斜角为α,则①|

AB|=x +x +p②|AB|=2p/(sina)?这两公式只适合过焦点的弦长的求法,对于其它的弦,只能用“弦长公式”来求.

(8)直线与抛物线的关系:直线与抛物线方程联立之后得到一元二次方程:x +bx+c=0,当a≠0时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果a=0,则直线是抛

物线的对称轴或是和对称轴平行的直线,此时,直线和抛物线相交,但只有一个公共点.

4.抛物线y?=2px上的动点可设为P(y0?/2p,y0)或P(y0?/2p,y0)或P(x0,y0),其中 y0?=2px0.

5.二次函数y=ax?+bx+c=a(x+b/2a)?+ [ (4ac-b?)/4a ](a≠0)的图象是抛物线:(1)顶点坐标为[-b/2a,(4ac-b?)/4a];(2)焦点的坐标为[-b/2a,(4ac-b?+1)/4a];(3)准线方

程是y=(4ac-b?+1)/4a.

6.抛物线的内外部

(1)点P(x0,y0)在抛物线y?=2px(p>0)的内部,得出y?<2px(p>0).

点P(x0,y0)在抛物线y?=2px(p>0)的外部,得出y?>2px(p>0).

(2)点P(x0,y0)在抛物线y?=-2px(p>0)的内部,得出y?<-2px(p>0).

点P(x0,y0)在抛物线y?=-2px(p>0)的外部,得出y?>-2px(p>0).

(3)点P(x0,y0)在抛物线x?=2py(p>0)的内部,得出x?<2py(p>0).

点P(x0,y0)在抛物线x?=2py(p>0)的外部,得出x?>2py(p>0).

(4)点P(x0,y0)在抛物线x?=-2py(p>0)的内部,得出x?<-2py(p>0).

点P(x0,y0)在抛物线x?=-2py(p>0)的外部,得出x?>-2py(p>0).

7. 抛物线的切线方程

(1)抛物线y?=2px(p>0)上一点P(x0,y0)处的切线方程是y0?y=p(x+x0).

(2)过抛物线y?=2px(p>0)外一点P(x0,y0)所引两条切线的切点弦方程是y0?y=p(x+x0).

(3)抛物线y?=2px(p>0)与直线Ax+By+C=0相切的条件是pB?=2AC.

答题完毕,希望能够帮助你,有疑问欢迎纳,如果满意那就请点击右下角“纳答案”,谢谢!

高中数学 双曲线 椭圆 性质 公式 定理 a b c 含义

1抛物线y^2=8x上p点到其焦点的距离为9

P点的坐标?

易知:准线方程为X=-2,又抛物线上任一点到其焦点的距离与其到准线的距离相等,所以P点的坐标(7,2√14),或(7,-2√14)。

2.抛物线y^2=x

上p点到准线的距离等于它到顶点的距离

P点的坐标?

易知:准线方程为X=-0.25,又抛物线上任一点到其焦点的距离相等,可知三角形pfo为等腰三角形,p点必为f

o的

中垂线与抛物线的交点,故P(1/8,+√2/4)或(1/8,-√2/4)

3.椭圆两焦点(-4.0)(4.0)P在椭圆上

三角形PF1F2的面积最大为12

椭圆方程为?

可知P点在y轴上时,三角形PF1F2的面积最大,由1/2

*

8*

b=12故可求得b=3,又c=4,易求a=5,所以椭圆方程为x^2/25+y^2/9=1

椭圆公式和双曲线公式推导

椭圆

定义,一个动点到两个定点的距离之和为定值。2a为长轴,2b为短轴,2c为焦距。

a平方=b平方+c平方。离心率e=c/a

离心率要小于1大于0

双曲线

定义,一个动点到两个定点的距离之差为定值。2a为长轴,2b为短轴,2c为焦距。

c平方=b平方+a平方

离心率e=c/a

离心率要大于1

双曲线渐近线方程为y=+-b/a

x

常考的就这些了吧。

加急! 高考数学的抛物线,双曲线,椭圆和圆,有什么规律和定理,做题思路之类的?

一、椭圆。

椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。

椭圆截与两焦点连线重合的直线所得的弦为长轴;椭圆截垂直平分两焦点连线的直线所得弦为短轴。

在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。

椭圆的标准方程有两种,取决于焦点所在的坐标轴:

1)焦点在X轴时,标准方程为:x&#178;/a&#178;+y&#178;/b&#178;=1 (a>b>0)

2)焦点在Y轴时,标准方程为:y&#178;/a&#178;+x&#178;/b&#178;=1 (a>b>0)

椭圆上任意一点到F1,F2距离的和为2a,F1,F2之间的距离为2c。而公式中的b&#178;=a&#178;-c&#178;。b是为了书写方便设定的参数。

椭圆的面积是πab。

标准形式的椭圆在(x0,y0)点的切线就是 :xx0/a&#178;+yy0/b&#178;=1。

对称性:关于X轴对称,Y轴对称,关于原点中心对称。

顶点:(a,0)(-a,0)(0,b)(0,-b)。

离心率越大椭圆就越扁,越小则越接近于圆。

椭圆的周长等于特定的正弦曲线在一个周期内的长度。

二、双曲线。

双曲线(希腊语“&#8017;περβολ&#942;”,字面意思是“超过”或“超出”)是定义为平面交截直角圆锥面的两半的一类圆锥曲线。

它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。

可以从图像中看出,双曲线有两个分支。当焦点在x轴上时,为左轴与右轴;当焦点在y轴上时,为上轴与下轴。

双曲线有两个焦点。焦点的横(纵)坐标满足c&#178;=a&#178;+b&#178;。

双曲线和它的对称轴有两个交点,它们叫做双曲线的顶点。

两顶点之间的距离称为双曲线的实轴。实轴长的一半称为实半轴。

在y轴上画出B1(0,b)和B2(0,-b),以B1B2为虚轴。

双曲线有两条渐近线。渐近线和双曲线不相交。一般地我们把直线Y=±(b/a)X叫做双曲线的渐进线(asymptote to the hyperbola )。特别地,反比例函数的图像为双曲线,它的渐近线是两条坐标轴。

三、抛物线。

平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。

抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等。 它在几何光学和力学中有重要的用处。 抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。二次函数图像就是一条抛物线。

抛物线有开口方向,右开口抛物线:y2=2px。左开口抛物线:y2= -2px,上开口抛物线:x2=2py,下开口抛物线:x2=-2py。

①原点在抛物线上; ②对称轴为坐标轴的抛物线如上图,③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4。

抛物线是轴对称图形,它的对称轴简称轴,抛物线与其对称轴的交点叫做抛物线的顶点。

抛物线即把物体抛掷出去,落在远处地面,这物体在空中经过的曲线。经焦点的光线经抛物线反射后的光线平行于抛物线的对称轴。

希望我能帮助你解疑释惑。

高中数学题2道,椭圆双曲线,向量

一、椭圆:

(1)椭圆的定义:平面内与两个定点 的距离的和等于常数(大于 )的点的轨迹。

第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数 的点的轨迹。

其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距;定直线叫做准线。

常数叫做离心率。

注意: 表示椭圆; 表示线段 ; 没有轨迹;

(2)椭圆的标准方程、图象及几何性质:

中心在原点,焦点在 轴上

中心在原点,焦点在 轴上

标准方程

参数方程 为参数)

为参数)

图 形

顶 点

对称轴 轴, 轴;短轴为 ,长轴为

焦 点

焦 距

离心率 (离心率越大,椭圆越扁)

准 线

通 径 ( 为焦准距)

焦半径

焦点弦

仅与它的中点的横坐标有关

仅与它的中点的纵坐标有关

焦准距

二、双曲线:

(1)双曲线的定义:平面内与两个定点 的距离的差的绝对值等于常数(小于 )的点的轨迹。

第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数 的点的轨迹。

其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距;定直线叫做准线。

常数叫做离心率。

注意: 与 ( )表示双曲线的一支。

表示两条射线; 没有轨迹;

(2)双曲线的标准方程、图象及几何性质:

中心在原点,焦点在 轴上

中心在原点,焦点在 轴上

标准方程

图 形

顶 点

对称轴 轴, 轴;虚轴为 ,实轴为

焦 点

焦 距

离心率 (离心率越大,开口越大)

准 线

渐近线

通 径 ( 为焦准距)

焦半径 在左支

在右支

在下支

在上支

焦准距

(3)双曲线的渐近线:

①求双曲线 的渐近线,可令其右边的1为0,即得 ,因式分解得到。

②与双曲线 共渐近线的双曲线系方程是 ;

(4)等轴双曲线为 ,其离心率为

三、抛物线:

(1)抛物线的定义:平面内与一个定点的距离等于到一条定直线的距离点的轨迹。

其中:定点为抛物线的焦点,定直线叫做准线。

(2)抛物线的标准方程、图象及几何性质:

焦点在 轴上,

开口向右 焦点在 轴上,

开口向左 焦点在 轴上,

开口向上 焦点在 轴上,

开口向下

标准方程

图 形

顶 点

对称轴 轴

焦 点

离心率

准 线

通 径

焦半径

焦点弦 (当 时,为 ——通径)

焦准距

1.设P(x,y),椭圆a1,b1;双曲线a2,b2

∵向量PF1·向量PF2=0

∴(x-c,y)·(x+c,y)=0

∴x?+y?=c?

e1=c/a1,e2=c/a2

∴1/(e1)?+1/(e2)?=[(a1)?+(a2)?]/c?

以上均可以由题设推出来,下面就着手求解(a1)?+(a2)?与c?的关系

设椭圆方程为x?/(a1)?+y?/(b1)?=1;双曲线的方程为x?/(a2)?-y?/(b2)?=1

还有一个已知没用到:p是交点

把p(x,y)代入椭圆方程和双曲线方程

椭圆:(a1)?-(b1)?=c?

方程可整理为[(a1)?-c?]x?+(a1)?y?=(a1)?[(a1)?-c?]

∵x?+y?=c?

∴方程整理为c?x?=2(a1)?c?-(a1)?(a1)?(四次方我打不出来呵呵见谅哈)

同理可证双曲线方程可整理为:

c?x?=2(a2)?c?-(a2)?(a2)?

∴两曲线方程相减,得

(a1)?+(a2)?=2c?

∴1/(e1)?+1/(e2)?=[(a1)?+(a2)?]/c?=2

这种题大多是计算量大,技巧性不很高,所以静下心来计算会做出来的

2.延长CE交DA延长线与点H

∴△AEH∽△BEC

∴AH:BC=AE:BE=1/2

∴向量AH=1/2向量BC=1/2b

同样可证明△FGH∽△BGC

FG:BG=FH:BC=3/4

∴FG=3/4BG=3/7FB=3/7(向量AB+向量FA)=3a/7-3b/28

向量=向量AF+向量FG=b/4=3a/7-3b/28=3a/7+b/7

这种题方法一般都比较繁琐,就是不停地把目标向量周围的向量倒来倒去的,建议在倒不出来时考虑一下添加线,还有,这种题的草稿写得工整一点(草稿要什么工整啊?!),不然有时你就会发现倒着倒着那答案却在草稿斑斑处。。。呵呵

我现在上大一了,看着这些高三的题,不由得感叹一声:“高三的题真是越来越变态了!!!!”

文章标签: # 椭圆 # 双曲线 # 方程