您现在的位置是: 首页 > 招生信息 招生信息

数列高考试题,数列高考题及答案大题

tamoadmin 2024-07-09 人已围观

简介1.一道高考数列题2.高三数列高考题求详解。在线等3.高考数列大题求解4.求 高考数列各种主要题型数 列 经 典 题 选 析江苏 王海平数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位.一,等差数列与等比数列例1.A={递增等比数列的公比},B={递减等比数列的公比},求A∩B.解:设q∈A,则可知q>0(否则数列为摆动数列).由an+1-an

1.一道高考数列题

2.高三数列高考题求详解。在线等

3.高考数列大题求解

4.求 高考数列各种主要题型

数列高考试题,数列高考题及答案大题

数 列 经 典 题 选 析

江苏 王海平

数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位.

一,等差数列与等比数列

例1.A={递增等比数列的公比},B={递减等比数列的公比},求A∩B.

解:设q∈A,则可知q>0(否则数列为摆动数列).

由an+1-an=a1·qn-a1·qn-1=a1·qn-1(q-1)>0,得

当a1>0时,那么q>1;当a1<0时,则0从而可知 A={q | 0若q∈A,同样可知q>0.由an+1-an=a1·qn-a1·qn-1=a1·qn-1(q-1)0时,那么0亦可知 B={q | 0故知A∩B={q | 0说明:貌似无法求解的问题,通过数列的基本量,很快就找到了问题的突破口!

例2.求数列1,(1+2),(1+2+22),……,(1+2+22+……+2n-1),……前n项的和.

分析:要求得数列的和,当务之急是要求得数列的通项,并从中发现一定规律.而通项又是一等比数列的和.设数列的通项为an,则an=1+2+22+……+2n-1==2n-1.从而该数列前n项的和

Sn=(2-1)+(22-1)+(23-1)+…+(2n-1)

=(2+22+23+…+2n)-n=-n=2n+1-n-2.

说明:利用下列常用求和公式求和是数列求和的最基本最重要的方法.

等差数列求和公式:

2,等比数列求和公式:

4,

常用的数列求和方法有:利用常用求和公式求和;错位相减法求和;反序相加法求和;分组法求和;裂项法求和;合并法求和;利用数列的通项求和等等.

例3.已知等差数列{an}的公差d=,S100=145.设S奇=a1+a3+a5+……+a99,S'=a3+a6+a9+……+a99,求S奇,S'.

解:依题意,可得 S奇+S偶=145,

即S奇+(S奇+50d)=145, 即2 S奇+25=145, 解得,S奇=120.

又由S100=145,得 =145,故得a1+a100=2.9

S'=a3+a6+a9+……+a99

=====1.7·33=56.1.

说明:整体思想是求解数列问题的有效手段!

例4.在数列{an}中,a1=b(b≠0),前n项和Sn构成公比为q的等比数列.

(1)求证:数列{an}不是等比数列;

(2)设bn=a1S1+a2S2+…+anSn,|q|<1,求bn.

解:(1)证明:由已知S1=a1=b

∵{Sn}成等比数列,且公比为q.

∴Sn=bqn-1,∴Sn-1=b·qn-2(n≥2).

当n≥2时,an=Sn-Sn-1=bqn-1-bqn-2=b·(q-1)·qn-2

故当q≠1时,==q,

而==q-1≠q,∴{an}不是等比数列.

当q=1,n≥2时,an=0,所以{an}也不是等比数列.

综上所述,{an}不是等比数列.

(2)∵|q|<1,由(1)知n≥2,a2,a3,a4,…,an构成公比为q的等比数列,∴a2S2,a3S3,…,anSn是公比为q2的等比数列.

∴bn=b2+a2S2·(1+q2+q4+…+q2n-4)

∵S2=bq,a2=S2-S1=bq-b

∴a2S2=b2q(q-1)

∴bn=b2+b2q(q-1)·

∵|q|0,1600[()n-1]-4000×[1-()n]>0

化简得,5×()n+2×()n-7>0?

设x=()n,5x2-7x+2>0? ∴x1(舍)? 即()n4,故使得上式成立的最小n∈N+为5,

故最少需要经过5年的努力,才能使全县的绿化率达到60%.

三,归纳,猜想与证明

例7.已知数列{ an}满足Sn+an=(n2+3n-2),数列{ bn}满足b1=a1,

且bn=an-an-1-1(n≥2).

(1)试猜想数列{ an}的通项公式,并证明你的结论;

解:(1)∵Sn+an=(n2+3n-2),S1=a1,∴2a1=(1+3×1-2)=1,

∴a1==1-.当n=2时,有+2a2=(22+3×2-2)=4, ∴a2==2-

猜想,得数列{ an}的通项公式为an=n-

(2)若cn=b1+b2+…+bn,求的值.

当n=3时,有++3a3=8, ∴a3==3-.

用数学归纳法证明如下:

①当n=1时,a1=1-=,等式成立.

②假设n=k时,等式ak=k-成立,那么

n=k+1时,ak+1=Sk+1-Sk=[-ak+1]-[-ak],

.∴2 ak+1=k+2+ak, 2 ak+1=k+2+(k-),

∴ak+1=(k+1)-,即当n=k+1时,等式也成立.

综上①,②知,对一切自然数n都有an=n-成立.

(2)∵b1=a1=,bn=an-an-1-1=[n-]-[(n-1)-]-1=.

∴cn=b1+b2+…+bn=1-()n, ∴=[1-()n]=1.

例8.已知数列{an}满足a1=2,对于任意的n∈N,都有an>0,且(n+1) an2+an an+1-n an+12=0.又知数列{bn}满足:bn=2n-1+1..

(Ⅰ)求数列{an}的通项an以及它的前n项和Sn;?

(Ⅱ)求数列{bn}的前n项和Tn;?

(Ⅲ)猜想Sn和Tn的大小关系,并说明理由.

解:(n+1) an2+an an+1-n an+12=0.是关于an和an+1的二次齐次式,故可利用求根公式得到an与an+1的更为明显的关系式,从而求出an .

(Ⅰ)∵an>0(n∈N),且(n+1) an2+an an+1-n an+12=0,

∴ (n+1)()2+()-n=0.

∴=-1或=.

∵an>0(n∈N),∴=.

∴=···……··=···…··=n.

又a1=2,所以,an=2n.

∴Sn=a1+a2+a3+……+an=2(1+2+3……+n)=n2+n.

(Ⅱ)∵bn=2n-1+1,?

∴Tn=b1+b2+b3 +……+bn=20+21+22+……+2n-1+n=2n+n-1

(Ⅲ) Tn-Sn=2n-n2-1.?

当n=1时,T1-S1 =0,∴T1=S1;

当n=2时,T2-S2=-1,?∴T2当n=3时,T3-S3=-2,?∴T3当n=4时,T4-S4=-1,?∴T4S5;

当n=6时,T6-S6=27,,?∴T6>S6;

猜想:当n≥5时,Tn>Sn.即2n>n2+1.下用数学归纳法证明:?

1° 当n=5时,前面已验证成立;

2° 假设n=k(k≥5)时命题成立,即2k>k2+1.成立,

那么当n=k+1时,

2k+1=2·2k>2(k2+1)=k2+k2+2≥k2+5k+2>k2+2k+2=(k+1)2+1.

即n=k+1(k≥5)时命题也成立.

由以上1°,2°可知,当n≥5时,有Tn>Sn.;

综上可知:当n=1时,T1=S1;当2≤n<5时,TnSn..

说明:注意到2n的增长速度大于n2+1的增长速度,所以,在观察与归纳的过程中,不能因为从n=1到n=4都有Tn≤Sn.就得出Tn≤Sn.的结论,而应该坚信:必存在,使得2n>n2+1,从而使得观察的过程继续下去.

例9. 已知函数f(x)=x2-3,(x≤-3)

(1)求f(x)的反函数f-1(x);

(2)记a1=1,an= -f-1(an-1)(n≥2),请写出a2,a3,a4的值并猜测想an的表达式.再用数学归纳法证明.

解:(1)设y=f(x)= x2-3,(x≤-3 ),由y2=x2-3(x≤-),x= -y2+3

即f-1(x)= -x2+3 (x≥0).

(2)由a1=1且an= -f-1(an-1)(n≥2的整数),a2= -f-1(a1)= -( -a12+3 =4 ,

a3=3+4=7 ,a4=3+7=10 .

依不完全归纳可以猜想到:an=3n-2 (n自然数)

下面用数学归纳法予以证明:

当n=1时,a1=3×1-2 =1命题成立

假设n=k(1≤k≤n)时,命题成立:即ak=3k-2

那么当n=k+1时,ak+1=-f-1(ak)

=ak2+3 =3k-2+3 =3k+1-2

综上所述,可知对一切自然数n均有an=3n-2 成立.

例10. 已知数列{an}中,a7=4,an+1=,.

(Ⅰ)是否存在自然数m,使得当n≥m时,an<2;当n2

(Ⅱ)是否存在自然数p,使得当n≥p时,总有13时,也有an<2 这就引导我们去思考这样一个问题:若an<2,能否得出an+1<2

为此,我们考查an+1-2与an-2的关系,易得

an+1-2=-2 =.

可以看出:当an<2时,必有an+1<2.于是,我们可以确定:当n≥10时,必有an2.

方法之一是一一验证.即通过已知条件解出:an=.由此,我们可以从a7出发,计算出这个数列的第6项到第1项,从而得出结论.

另外,得益于上述解法,我们也可以考虑这样的问题:"若an+1>2,能否得出an>2"

由an-2=-2=不难得知:上述结论是正确的.

所以,存在m=10,使得当n≥m时,an<2;当n2.

(Ⅱ)问题等价于:是否存在自然数p,使得当n≥p时,总有an-1-an+1-2 an<0.

由(Ⅰ)可得:an-1-an+1-2 an=.

我们已经知道:当n≥10时,an<2,于是(an<2)3<0,(7-an)-3

观察前面计算的结果,可以看出:a100,从而得出结论.

说明:(1)归纳,猜想是建立在细致的观察和缜密的分析基础上的,并非无源之水,无本之木.(2)上述分析的过程如果用数学归纳法写出,则相当简洁,但同时也掩盖了思维的过程.

四,由递推公式探求数列问题

例11.设An为数列{an}的前n项的和,An=(an-1),数列{bn}的通项公式为bn=4n+3.

(1)求数列{an}的通项公式;

(2)把数列{an}与{bn}的公共项按从小到大先后顺序排成一个新的数列{dn},证明数列{dn}的通项公式为dn=32n+1;

(3)设数列{dn}的第n项是数列{bn}中的第r项,Br为数列{bn}的前r项的和,Dn为数列{dn}的前n项和,Tn=Br-Dn,求.

解:(1)由An= (an-1),可知An+1= (an+1-1)

∴An+1-An= (an+1-an)=an+1,即 =3

而a1=A1= (a1-1),得a1=3

所以数列{an}是以3为首项,公比为3的等比数列,数列{an}的通项公式为an=3n.

(2)∵32n+1=3·32n=3·(4-1)2n

=3×(42n+C12n·42n-1(-1)+…+C2n2n-1·4·(-1)+(-1)2n)

=4m+3

∴32n+1∈{bn}

而数32n=(4-1)2n

=42n+C2n1·42n-1·(-1)+…+C2n2n-1·4·(-1)+(-1)2n

=(4k+1)

∴32n{bn}

而数列{an}={32n+1}∪{32n}

∴ dn=32n+1

(3)由32n+1=4·r+3,可知r=

∵Br==r(2r+5)=·

Dn=·(1-9n)=(9n-1)

∴Tn=Br-Dn=-(9n-1)

=·34n-·32n+

又∵(an)4=34n

∴=

例12. 已知函数f(x)=x+x2-a2 (a>0)

(1)求f(x)的反函数f-1(x)及其定义域;

(2)数列{an}满足a1=3aan+1=f-1an

设bn=,数列{bn}的前n项和为Sn,试比较Sn与的大小,并证明你的结论.

解:(1)给y-x=x2-a2 两边平方,整理得 x=

∵y-x=y-==≥0

∴y≥a或-a≤y<0

故f-1(x)= ,其定域为[-a,0)∪[a,+∞)

(2)∵an+1=f-1(an)=

∴bn+1==…=()2=bn2 (可两边取对数求解)

又a1=3a,b1===

∴bn=(bn-1)2=(bn-2)=(bn-3)

=…=(b1) =()

∴Sn=b1+b2+…+bn

=+()2+()+[()+()+…+()]==1-()n

由此可知,当n<3时,Sn3时,Sn>.

又∵2n-1=(1+1)n-1=1+C1n-1+C2n-1+C3n-1+……+Cn-1n-1

则当n≥4时,2n-1>1+C1n-1+C2n-1

=1+(n-1)+>n+1

∴().

当n=3时,Sn=+()2+()=++=<.

故知当n≤3 时,Sn2,故a22,得an>2,所以{an}单调递减.且因为an>2,所以

an-2=<(an-1-2)

<()2(an-2-2)<…2pq,又a1,b1不为零,∴c22≠c1·c3,故{cn}不是等比数列.

说明: 本题是2000年全国高考数学试题.其证法很多,建议读者从不同的角度审视此题.我们可以得出更一般的结论;

推论1:设数列{cn},cn=an+bn且a≠b,则数列{cn+1-pcn}为等比数列的充要条件是p=a或p=b.

推论2:设{an},{bn}是两个等比数列,则数列{an+bn}为等比数列的充要条件是,数列{an},{bn}的公比相等.

推论3:公比为a,b的等比数列{an},{bn},且a≠b,s,t为不全为零的实数,cn=san+tbn为等比数列的充要条件是st=0.

例15.数列{an}中,a1=8,a4=2且满足an+2=2an+1-an n∈N

(1)求数列{an}的通项公式;

(2)设Sn=|a1|+|a2|+…+|an|,求sn;

(3)设bn= ( n∈N),Tn=b1+b2+…+bn( n∈N),是否存在最大的整数m,使得对任意n∈N,均有Tn>成立 若存在,求出m的值;若不存在,请说明理由.

解:(1)由an+2=2an+1-an

an+2-an+1=an+1-an,可知{an}成等差数列,d==-2

-∴an=10-2n

(2)由an=10-2n≥0得n≤5

∴当n≤5时,Sn=-n2+9n

当n>5时,Sn=n2-9n+40

故Sn=-n2+9n 1≤n≤5n2-9n+40 n>5 (n∈N)

(3)bn===()

∴Tn= b1+b2+…+bn

=[(1-)+(-)+(-)+……+(-)]=(1-)=

>>Tn-1>Tn-2>……>T1.

∴要使Tn>总成立,需

一道高考数列题

1.

A(n+1)=[(n+1)/n]An+(n+1)/2^n

两边同除n+1

A(n+1)/(n+1)=An/n+1/2^n

B(n+1)=Bn+1/2^n

Bn=B(n-1)+1/2^(n-1)

B(n-1)=B(n-2)+1/2^(n-2)

……

B2=B1+1/2^1

上式相加,相同项消去

Bn=B1+1/2^1+1/2^2+……+1/2^(n-2)+1/2^(n-1)

=A1/1+(1/2)×(1-1/2^(n-1))/(1-1/2)

=1+1-1/2^(n-1)

=2-1/2^(n-1)

2.

An=nBn=n(2-1/2^(n-1))=2n-n/2^(n-1)

Sn=A1+A2+A3+……+An

=2-1/1+4-2/2+6-3/4+……+2n-n/2^(n-1)

=(2+4+6+……+2n)-(1/1+2/2+3/4+……+n/2^(n-1))

=n(n+1)-(1/1+2/2+3/4+……+n/2^(n-1))

2Sn=2n(n+1)-(2+2/1+3/2+……+n/2^(n-2))

两式错位相减

Sn=n(n+1)-(2+(2/1-1/1)+(3/2-2/2)+……+(n/2^(n-2)-(n-1)/2^(n-2))-n/2^(n-1))

=n(n+1)-(2+1/1+1/2+……1/2^(n-2)-n/2^(n-1))

=n(n+1)-2×(1-1/2^n)/(1-1/2)+n/2^(n-1)

=n^2+n-4+(n+2)/2^(n-1)

高三数列高考题求详解。在线等

解:Cn+1 - Cn=12n+1

当n为奇数时,n=2k+1.

Gn=C1+[(C3-C2)+(C5-C4)+........+(C2K+1 - C2K)]

=1+[(24*1+1)+(24*2+1)+....+(24*k+1)]

=1+k+24*(1+k)k/2

=12k^2+13k+1

=3n^2+0.5n-2.5

当n为偶数时,n=2k.

Gn=-[(C2-C1)+(C4-C3)+......+(C2K -C2K-1)]

=-[(12*1+1)+(12*3+1)+....+(12*(2K-1)+1)]

=-[12*2K*K/2 + K]

=-3n^2-0.5n

高考数列大题求解

k=1,则Sn=an +n?-n ...①

当n≥2,S<n-1>=a<n-1>+(n-1)?-(n-1) ...②

①-②得 Sn-S<n-1>=an - a<n-1> + 2n-2

即an=an-a<n-1>+2n-2

∴a<n-1>=2n-2

∴ an=2(n+1)-2=2n

求 高考数列各种主要题型

⑴ a(n+1)=(1+1/n)an+(n+1)/2^n

a(n+1)=[(n+1)/n]an+(n+1)/2^n

两边同除(n+1)得:a(n+1)/(n+1)=an/n+1/2^n

b1=a1/1=1

b(n+1)-bn=1/2^n

n>=2时

b2-b1=1/2

b3-b2=1/2^2

……

bn-b(n-1)=1/2^(n-1)

把以上n-1个等式相加:bn-b1=bn-1=1/2+1/2^2+…+1/2^(n-1)=1-1/2^(n-1)

bn=2-1/2^(n-1),b1=1也适合此式。

所以,数列{bn}的通项公式为:bn=2-1/2^(n-1),(n为正整数)

bn=an/n=2-1/2^(n-1)

an=2n-n/2^(n-1)

Sn=2-1/2^0+4-2/2+6-3/2^2+…+2n-n/2^(n-1)

=(2+4+6+…+2n)-[1/2^0+2/2+3/2^3+…+n/2^(n-1)]

=n(n+1)-[1/2^0+2/2+3/2^3+…+n/2^(n-1)]

设Tn=1/2^0+2/2+3/2^3+…+n/2^(n-1) (1)

(1/2)*(1)得:(1/2)Tn=1/2+2/2^2+3/2^3+…+n/2^n (2)

(1)-(2)得:

(1/2)Tn=1+1/2+1/2^2+1/2^3+…+1/2^(n-1)-n/2^n=2-1/2^(n-1)-n/2^n

Tn=4-1/2^(n-2)-2n/2^(n-2)=4-(2n+1)/2^(n-2)

Sn=n(n+1)-Tn=n(n+1)+(2n+1)/2^(n-2)-4,n为正整数。

注:”∧n“指”n次方“

希望回答对你有帮助。

求数列通项公式的常规思想方法列举(配典型例题)

数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。

一. 观察法

例1:根据数列的前4项,写出它的一个通项公式:

(1)9,99,999,9999,…

(2)

(3)

(4)

解:(1)变形为:101-1,102―1,103―1,104―1,……

∴通项公式为:

(2) (3) (4) .

观察各项的特点,关键是找出各项与项数n的关系。

二、定义法

例2: 已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f (x) = (x-1)2,且a1 = f (d-1),a3 = f (d+1),b1 = f (q+1),b3 = f (q-1),

(1)求数列{ a n }和{ b n }的通项公式;

解:(1)∵a 1=f (d-1) = (d-2)2,a 3 = f (d+1)= d 2,

∴a3-a1=d2-(d-2)2=2d,

∴d=2,∴an=a1+(n-1)d = 2(n-1);又b1= f (q+1)= q2,b3 =f (q-1)=(q-2)2,

∴ =q2,由q∈R,且q≠1,得q=-2,

∴bn=b?qn-1=4?(-2)n-1

当已知数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求得首项及公差公比。

三、 叠加法

例3:已知数列6,9,14,21,30,…求此数列的一个通项。

解 易知

……

各式相加得 ∴

一般地,对于型如 类的通项公式,只要 能进行求和,则宜采用此方法求解。

四、叠乘法

例4:在数列{ }中, =1, (n+1)? =n? ,求 的表达式。

解:由(n+1)? =n? 得 ,

= … = 所以

一般地,对于型如 = (n)? 类的通项公式,当 的值可以求得时,宜采用此方法。

五、公式法

若已知数列的前 项和 与 的关系,求数列 的通项 可用公式

求解。

例5:已知下列两数列 的前n项和sn的公式,求 的通项公式。

(1) 。 (2)

解: (1)

= = =3

此时, 。∴ =3 为所求数列的通项公式。

(2) ,当 时

由于 不适合于此等式 。 ∴

注意要先分n=1和 两种情况分别进行运算,然后验证能否统一。

例6. 设数列 的首项为a1=1,前n项和Sn满足关系

求证:数列 是等比数列。

解析:因为

所以

所以,数列 是等比数列。

六、阶差法

例7.已知数列 的前 项和 与 的关系是

,其中b是与n无关的常数,且 。

求出用n和b表示的an的关系式。

解析:首先由公式: 得:

利用阶差法要注意:递推公式中某一项的下标与其系数的指数的关系,即

其和为 。

七、待定系数法

例8:设数列 的各项是一个等差数列与一个等比数列对应项的和,若c1=2,c2=4,c3=7,c4=12,求通项公式cn

解:设

点评:用待定系数法解题时,常先假定通项公式或前n项和公式为某一多项式,一般地,若数列 为等差数列:则 , (b、c为常数),若数列 为等比数列,则 , 。

八、 辅助数列法

有些数列本身并不是等差或等比数列,但可以经过适当的变形,构造出一个新的数列为等差或等比数列,从而利用这个数列求其通项公式。

例9.在数列 中, , , ,求 。

解析:在 两边减去 ,得

∴ 是以 为首项,以 为公比的等比数列,

∴ ,由累加法得

=

= … = =

=

例10.(2003年全国高考题)设 为常数,且 ( ),

证明:对任意n≥1,

证明:设,

用 代入可得

∴ 是公比为 ,首项为 的等比数列,

∴ ( ),

即:

型如an+1=pan+f(n) (p为常数且p≠0, p≠1)可用转化为等比数列等.

(1)f(n)= q (q为常数),可转化为an+1+k=p(an+k),得{ an+k }是以a1+k为首项,p为公比的等比数列。

例11:已知数 的递推关系为 ,且 求通项 。

解:∵ ∴

则辅助数列 是公比为2的等比数列

∴ 即 ∴

例12: 已知数列{ }中 且 ( ),,求数列的通项公式。

解:∵

∴ , 设 ,则

故{ }是以 为首项,1为公差的等差数列

∴ ∴

例13.(07全国卷Ⅱ理21)设数列 的首项 .

(1)求 的通项公式;

解:(1)由

整理得 .

又 ,所以 是首项为 ,公比为 的等比数列,得

注:一般地,对递推关系式an+1=pan+q (p、q为常数且,p≠0,p≠1)可等价地改写成

则{ }成等比数列,实际上,这里的 是特征方程x=px+q的根。

(2) f(n)为等比数列,如f(n)= qn (q为常数) ,两边同除以qn,得 ,令bn= ,可转化为bn+1=pbn+q的形式。

例14.已知数列{an}中,a1= , an+1= an+( )n+1,求an的通项公式。

解:an+1= an+( )n+1 乘以2n+1 得 2n+1an+1= (2nan)+1 令bn=2nan 则 bn+1= bn+1

易得 bn= 即 2nan=

∴ an=

(3) f(n)为等差数列

例15.已知已知数列{an}中,a1=1,an+1+an=3+2 n,求an的通项公式。

解:∵ an+1+an=3+2 n,an+2+an+1=3+2(n+1),两式相减得an+2-an=2

因此得,a2n+1=1+2(n-1), a2n=4+2(n-1), ∴ an= 。

注:一般地,这类数列是递推数列的重点与难点内容,要理解掌握。

(4) f(n)为非等差数列,非等比数列

例16.(07天津卷理)在数列 中, ,其中 .

(Ⅰ)求数列 的通项公式;

解:由 , ,

可得 ,

所以 为等差数列,其公差为1,首项为0,故 ,所以数列 的通项公式为 .

这种方法类似于换元法, 主要用于已知递推关系式求通项公式。

九、归纳、猜想

如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。

例17.(2002年北京春季高考)已知点的序列 ,其中 , , 是线段 的中点, 是线段 的中点,…, 是线段 的中点,…

(1) 写出 与 之间的关系式( )。

(2) 设 ,计算 ,由此推测 的通项公式,并加以证明。

(3) 略

解析:(1)∵ 是线段 的中点, ∴

(2) ,

= ,

= ,

猜想 ,下面用数学归纳法证明

当n=1时, 显然成立;

假设n=k时命题成立,即

则n=k+1时, =

=

∴ 当n=k+1时命题也成立,∴ 命题对任意 都成立。

例18:在数列{ }中, ,则 的表达式为 。

分析:因为 ,所以得: ,

猜想: 。

十、倒数法

数列有形如 的关系,可在等式两边同乘以 先求出

例19.设数列 满足 求

解:原条件变形为 两边同乘以 得 .

综而言之,等差、等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上;以上介绍的仅是常见可求通项基本方法,同学们应该在学习不断的探索才能灵活的应用.只要大家认真的分析求通项公式并不困难.

文章标签: # an # 数列 # bn