您现在的位置是: 首页 > 招生信息 招生信息
高考空间几何题及答案解析_高考空间几何题及答案
tamoadmin 2024-05-24 人已围观
简介1.2011安徽高考理数空间几何那大题怎么证明BCEF四点共面?!!2.一道立体几何题目 在线等!高三的!3.怎么学好立体几何啊!4.空间向量与立体几何5.具体如何应用矩阵来解决高三的立体几何图形问题? 在高考结束后,很多考生都会对答案,提前预估自己的分数,这样方便大家提前准备志愿填报。下面是我分享的2022全国新高考Ⅱ卷文科数学试题及答案解析,欢迎大家阅读。 2022全国新高考Ⅱ卷文
1.2011安徽高考理数空间几何那大题怎么证明BCEF四点共面?!!
2.一道立体几何题目 在线等!高三的!
3.怎么学好立体几何啊!
4.空间向量与立体几何
5.具体如何应用矩阵来解决高三的立体几何图形问题?
在高考结束后,很多考生都会对答案,提前预估自己的分数,这样方便大家提前准备志愿填报。下面是我分享的2022全国新高考Ⅱ卷文科数学试题及答案解析,欢迎大家阅读。
2022全国新高考Ⅱ卷文科数学试题及答案解析
2022全国新高考Ⅱ卷文科数学试题还未出炉,待高考结束后,我会第一时间更新2022全国新高考Ⅱ卷文科数学试题,供大家对照、估分、模拟使用。
2022高考数学大题题型 总结
一、三角函数或数列
数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等差数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。
近几年来,关于数列方面的考题题主要包含以下几个方面:
(1)数列基本知识考查,主要包括基本的等差数列和等比数列概念以及通项公式和求和公式。
(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。
(3)应用题中的数列问题,一般是以增长率问题出现。
二、立体几何
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
三、统计与概率
1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机事件的发生存在着规律性和随机事件概率的意义。
6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8.会计算事件在n次独立重复试验中恰好发生k次的概率.
四、解析几何(圆锥曲线)
高考解析几何剖析:
1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:
(1)、几何问题代数化。
(2)、用代数规则对代数化后的问题进行处理。
五、函数与导数
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等 方法 精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
2022高考解答题评分标准
解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。
解题策略:
(1)常见失分因素:
1.对题意缺乏正确的理解,应做到慢审题快做题;
2.公式记忆不牢,考前一定要熟悉公式、定理、性质等;
3.思维不严谨,不要忽视易错点;
4.解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;
5.计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;
6.轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
2022全国新高考Ⅱ卷文科数学试题及答案解析相关 文章 :
★ 2022高考全国甲卷数学试题及答案
★ 2022年全国乙卷高考语文真题试卷及答案解析(未公布)
★ 2022年浙江高考数学试卷
★ 2022新高考2卷语文试题及答案一览
★ 2022全国高考试卷分几类
★ 2022高考数学必考知识点归纳最新
★ 2022年高考数学必考知识点总结最新
★ 2022高考文综理综各题型分数值一览
★ 2022年新高考Ⅰ卷语文题目与答案参考
★ 2022新高考Ⅱ卷选择创造未来作文12篇
2011安徽高考理数空间几何那大题怎么证明BCEF四点共面?!!
1.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第10题,文科数学第10题]
已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H.设四面体EFGH的表面积为T,则等于()
A.B.C.D.
2.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第16题,文科数学第16题]
已知a、b为不垂直的异面直线,是一个平面,则a、b在上的射影有可能是.
①两条平行直线②两条互相垂直的直线
③同一条直线④一条直线及其外一点
在一面结论中,正确结论的编号是(写出所有正确结论的编号).
3.[2004年全国高考(四川云南吉林黑龙江)文科数学第6题]
正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()
A.75°B.60°C.45°D.30°
4.[2004年全国高考(四川云南吉林黑龙江)理科数学第7题,文科数学第10题]
已知球O的半径为1,A、B、C三点都在球面上,且每两点间的球面距离均为,则
球心O到平面ABC的距离为()
A.B.C.D.
5.[2004年全国高考(四川云南吉林黑龙江)理科数学第16题,文科数学第16题]
下面是关于四棱柱的四个命题:
①若有两个侧面垂直于底面,则该四棱柱为直四棱柱
②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱
③若四个侧面两两全等,则该四棱柱为直四棱柱
④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱
其中,真命题的编号是(写出所有正确结论的编号).
6.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第9题,文科数学第10题]
正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为()
A.B.C.D.
7.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第13题,文科数学第14题]
用平面截半径为的球,如果球心到平面的距离为,那么截得小圆的面积与球的表面积的比值为.
8.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第3题]
正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为()
A.B.C.D.
9.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第7题]
对于直线m、n和平面,下面命题中的真命题是()
A.如果、n是异面直线,那么
B.如果、n是异面直线,那么相交
C.如果、n共面,那么
D.如果、n共面,那么
10.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第11题]
已知球的表面积为20,球面上有A、B、C三点.如果AB=AC=BC=2,则球心到平
面ABC的距离为()
A.1B.C.D.2
11.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第10题]
已知球的表面积为20π,球面上有A、B、C三点.如果AB=AC=2,BC=,则球心
到平面ABC的距离为()
A.1B.C.D.2
12.(2004年北京高考·理工第3题,文史第3题)
设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:
①若,,则
②若,,,则
③若,,则
④若,,则
其中正确命题的序号是
A. ①和②B. ②和③C. ③和④D. ①和④
13.(2004年北京高考·理工第4题,文史第6题)
如图,在正方体中,P是侧面内一动点,若P到直线BC与直线的距离相等,则动点P的轨迹所在的曲线是
A. 直线B. 圆C. 双曲线D. 抛物线
14.(2004年北京高考·理工第11题,文史第12题)
某地球仪上北纬纬线的长度为,该地球仪的半径是__________cm,
表面积是______________cm2
15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题,满分12分]
如图,已知四棱锥 P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.
(I)求点P到平面ABCD的距离;
(II)求面APB与面CPB所成二面角的大小.
16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题,满分12分]
如图,直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=1,CB=,侧棱AA1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.
(Ⅰ)求证CD⊥平面BDM;
(Ⅱ)求面B1BD与面CBD所成二面角的大小.
17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题,满分12分]
三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3,
(1)求证:AB ⊥ BC;
(2,理科)设AB=BC=,求AC与平面PBC所成角的大小.
(2,文科) 如果AB=BC=,求侧面PBC与侧面PAC所成二面角的大小.
18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题,本小题满分12分]
如图,四棱锥P—ABCD中,底面ABCD 为矩形,AB=8,AD=4,侧面PAD为等边三角形,并且与底面所成二面角为60°.
(Ⅰ)求四棱锥P—ABCD的体积;
(Ⅱ)证明PA⊥BD.
19.(2004年北京高考·文史第16题,本小题满分14分)
如图,在正三棱柱中,AB=2,,由顶点B沿棱柱侧面经过棱到顶点的最短路线与的交点记为M,求:
(I)三棱柱的侧面展开图的对角线长
(II)该最短路线的长及的值
(III)平面与平面ABC所成二面角(锐角)的大小
20.(2004年北京高考·理工第16题,本小题满分14分)
如图,在正三棱柱中,AB=3,,M为的中点,P是BC上一点,且由P沿棱柱侧面经过棱到M的最短路线长为,设这条最短路线与的交点为N,求:
(I)该三棱柱的侧面展开图的对角线长
(II)PC和NC的长
(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)
参考答案
1.A2.①②④3.C4.B5.②④6.C7.8.A9.C
10.A11.A12.A13.D14.
15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题]
本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.
(I)解:如图,作PO⊥平面ABCD,垂足为点O.连结OB、OA、OD、OB与AD交于点E,连结PE.
∵AD⊥PB,∴AD⊥OB,
∵PA=PD,∴OA=OD,
于是OB平分AD,点E为AD的中点,所以PE⊥AD.
由此知∠PEB为面PAD与面ABCD所成二面角的平面角,
∴∠PEB=120°,∠PEO=60°
由已知可求得PE=
∴PO=PE·sin60°=,
即点P到平面ABCD的距离为.
(II)解法一:如图建立直角坐标系,其中O为坐标原点,x轴平行于DA.
.连结AG.
又知由此得到:
所以
等于所求二面角的平面角,
于是
所以所求二面角的大小为.
解法二:如图,取PB的中点G,PC的中点F,连结EG、AG、GF,则AG⊥PB,FG//BC,FG=BC.
∵AD⊥PB,∴BC⊥PB,FG⊥PB,
∴∠AGF是所求二面角的平面角.
∵AD⊥面POB,∴AD⊥EG.
又∵PE=BE,∴EG⊥PB,且∠PEG=60°.
在Rt△PEG中,EG=PE·cos60°=.
在Rt△PEG中,EG=AD=1.
于是tan∠GAE==,
又∠AGF=π-∠GAE.
所以所求二面角的大小为π-arctan.
16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题]
本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力.
满分12分.
解法一:(Ⅰ)如图,连结CA1、AC1、CM,则CA1=
∵CB=CA1=,∴△CBA1为等腰三角形,
又知D为其底边A1B的中点,
∴CD⊥A1B.∵A1C1=1,C1B1=,∴A1B1=
又BB1=1,A1B=2. ∵△A1CB为直角三角形,D为A1B的中点,
∴CD=A1B=1,CD=CC1,又DM=AC1=,DM=C1M.
∴△CDM≌△CC1M,∠CDM=∠CC1M=90°,即CD⊥DM.
因为A1B、DM为平在BDM内两条相交直线,所以CD⊥平面BDM.
(Ⅱ)设F、G分别为BC、BD的中点,连结B1G、FG、B1F,则FG//CD,FG=CD.
∴FG=,FG⊥BD.
由侧面矩形BB1A1A的对角线的交点为D知BD=B1D=A1B=1,
所以△BB1D是边长为1的正三角形.
于是B1G⊥BD,B1G=∴∠B1GF是所求二面角的平面角,
又 B1F2=B1B2+BF2=1+(=,
∴
即所求二面角的大小为
解法二:如图,以C为原点建立坐标系.
(Ⅰ)B(,0,0),B1(,1,0),A1(0,1,1),
D(,M(,1,0),
则∴CD⊥A1B,CD⊥DM.
因为A1B、DM为平面BDM内两条相交直线,所以CD⊥平面BDM.
(Ⅱ)设BD中点为G,连结B1G,则
G(),、、),
所以所求的二面角等于
17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题]
本小题主要考查两个平面垂直的性质、直线与平面所成角等有关知识,以及逻辑思维能力和空间想象能力.满分12分.
(Ⅰ)证明:如图1,取AC中点D,连结PD、BD.
因为PA=PC,所以PD⊥AC,又已知面PAC⊥面ABC,
所以PD⊥面ABC,D为垂足.
因为PA=PB=PC,所以DA=DB=DC,
可知AC为△ABC的外接圆直径,因此AB⊥BC.
(Ⅱ,理科)解:如图2,作CF⊥PB于F,连结AF、DF.
因为△PBC≌△PBA,所以AF⊥PB,AF=CF.
因此,PB⊥平面AFC,
所以面AFC⊥面PBC,交线是CF,
因此直线AC在平面PBC内的射影为直线CF,
∠ACF为AC与平面PBC所成的角.
在Rt△ABC中,AB=BC=2,所以BD=
在Rt△PDC中,DC=
在Rt△PDB中,
在Rt△FDC中,所以∠ACF=30°.
即AC与平面PBC所成角为30°.
(2,文科)解:因为AB=BC,D为AC中点,所以BD⊥AC.
又面PAC⊥面ABC,
所以BD⊥平面PAC,D为垂足.
作BE⊥PC于E,连结DE,
因为DE为BE在平面PAC内的射影,
所以DE⊥PC,∠BED为所求二面角的平面角.
在Rt△ABC中,AB=BC=,所以BD=.
在Rt△PDC中,PC=3,DC=,PD=,
所以
因此,在Rt△BDE中,,
所以侧面PBC与侧面PAC所成的二面角为60°.
18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题]
本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析
问题能力.满分12分
解:(Ⅰ)如图1,取AD的中点E,连结PE,则PE⊥AD.
作PO⊥平面在ABCD,垂足为O,连结OE.
根据三垂线定理的逆定理得OE⊥AD,
所以∠PEO为侧面PAD与底面所成的二面角的平面角,
由已知条件可知∠PEO=60°,PE=6,
所以PO=3,四棱锥P—ABCD的体积
VP—ABCD=
(Ⅱ)解法一:如图1,以O为原点建立空间直角坐标系.通过计算可得
P(0,0,3),A(2,-3,0),B(2,5,0),D(-2,-3,0)
所以
因为所以PA⊥BD.
解法二:如图2,连结AO,延长AO交BD于点F.通过计算可得EO=3,AE=2,
又知AD=4,AB=8,
得
所以Rt△AEO∽Rt△BAD.
得∠EAO=∠ABD.
所以∠EAO+∠ADF=90°
所以AF⊥BD.
因为直线AF为直线PA在平面ABCD 内的身影,所以PA⊥BD.
19.(2004年北京高考·文史第16题,本小题满分14分)
本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。
解:(I)正三棱柱的侧面展开图是长为6,宽为2的矩形
其对角线长为
(II)如图,将侧面绕棱旋转使其与侧面在同一平面上,点B运动到点D的位置,连接交于M,则就是由顶点B沿棱柱侧面经过棱到顶点C1的最短路线,其长为
故
(III)连接DB,,则DB就是平面与平面ABC的交线
在中
又
由三垂线定理得
就是平面与平面ABC所成二面角的平面角(锐角)
侧面是正方形
故平面与平面ABC所成的二面角(锐角)为
20.(2004年北京高考·理工第16题)
本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。
解:(I)正三棱柱的侧面展开图是一个长为9,宽为4的矩形,其对角线长为
(II)如图1,将侧面绕棱旋转使其与侧成在同一平面上,点P运动到点的位置,连接,则就是由点P沿棱柱侧面经过棱到点M的最短路线
设,则,在中,由勾股定理得
求得
(III)如图2,连结,则就是平面NMP与平面ABC的交线,作于H,又平面ABC,连结CH,由三垂线定理得,
就是平面NMP与平面ABC所成二面角的平面角(锐角)
在中,
在中,
故平面NMP与平面ABC所成二面角(锐角)的大小为
一道立体几何题目 在线等!高三的!
设 G 是线段 DA 与线段 EB 延长线的交点,由于△OAB 与△ODE 都是正三角形,所以 OB ∥ ,OB= ,OG=OD=2 同理,设 G′是线段 DA 与线段 FC 延长线的交点,有 OG′=OD=2,又由于 G 和 G′都在线段 DA 的延长线上,所以 G 与 G′重合。 在△GED 和△GFD 中,由 OB∥ ,OB= 和 OC∥ , OC= ,可知 B,C 分别是 GE 和 GF 的中点,所以 BC 是△GEF 的中位线,故 BC∥EF. (向量法) 过点 F 作 FQ⊥AD,交 AD 于点 Q,连 QE,由平面 ABED⊥平面 ADFC,知 FQ⊥平面 ABED,以 Q 为 坐标原点, 标系。 为 x 轴正向, 为 y 轴正向, 为 z 轴正向,建立如图所示空间直角坐 由条件知 E( ,0,0),F(0,0, ),B( ,- ,0),C(0,- , )。 则有, , 。 所以 ,即得 BC∥EF. 所以bcef共面
怎么学好立体几何啊!
1,由正方形
CB垂直AB PA垂直平面·ABCD
PA垂直CB PA交BA于A
CB垂直面PAB 所以面PCB垂直PAB
所以二面角C-PB-A为90°
2,过B做BE垂直PC于E 连接DE BD
易得 DE垂直PC
BC=a BP=根2a PC=根3a
BE=根6/3*a=DE BD=根2a
余弦定理得 cos角DEB=(2/3a^2+2/3a^2-2a^2)/(2*2/3a^2)=-1/2
所以角DEB=-120°
即为B-PC-D
不懂再问
空间向量与立体几何
如何学好立体几何
立体几何在历年的高考中有两到三道小题,必有一道大题。虽然分值比重不是特别大,但是起着举足轻重的作用。下面就如何学好立体几何谈几点建议。
一 立足课本,夯实基础
直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处:
(1) 深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。
(2) 培养空间想象力。
(3) 得出一些解题方面的启示。
在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。
二 培养空间想象力
为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。
三 逐渐提高逻辑论证能力
立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出
四 “转化”思想的应用
我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:
1. 两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。
2. 异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。
3. 面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。
4. 三垂线定理可以把平面内的两条直线垂直转化为空间的两条直线垂直,而三垂线逆定理可以把空间的两条直线垂直转化为平面内的两条直线垂直。
以上这些都是数学思想中转化思想的应用,通过转化可以使问题得以大大简化。
五 总结规律,规范训练
立体几何解题过程中,常有明显的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。不断总结,才能不断高。
还要注重规范训练,高考中反映的这方面的问题十分严重,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求我们在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。对于即将参加高考的同学来说,考试的每一分都是重要的,在“按步给分”的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。
六 典型结论的应用
在平时的学习过程中,对于证明过的一些典型命题,可以把其作为结论记下来。利用这些结论可以很快地求出一些运算起来很繁琐的题目,尤其是在求解选择或填空题时更为方便。对于一些解答题虽然不能直接应用这些结论,但其也会帮助我们打开解题思路,进而求解出答案。
我相信,如果在学习过程中做到了以上六点,那么任何题目也会迎刃而解。
具体如何应用矩阵来解决高三的立体几何图形问题?
历年高考中空间向量与立体几何考点大致如下:
(1) 以向量为载体,运用向量的线性运算尤其是数量积的应用、证明平行、垂直等问题,以各种题型。
尤其以解答题为主进行考查,利用空间向量数量积求解相应几何问题,建立适当的空间直角坐标系,利用向量的坐标运算证明线线、线面、面面的平行于垂直,以及空间角与距离的求解问题,以解答题为主,多属于中档题。
(2) 利用向量数量积的有关知识解决几何问题,利用向量坐标运算考查平行、垂直、角、距离等几何问题是高考的热点。
空间向量(space vector)是一个数学名词,是指空间中具有大小和方向的量。
立体几何的计算和证明常常涉及到二大问题:
一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。
这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。
答:为了使复杂的问题简单化,也便于看图和理解,特作了x0y平面和交线在x轴上的平面来说明问题,至于平面位于何处,两平面交线的位置在哪里,原理都是一样的。详见下图。
从题面的问题来看,有点概念的问题需要澄清,欧几里得立体几何的问题,用不到矩阵,只有向量差积的时候才用到行列式,线性方程的问题才用到矩阵。它不同于非欧几里得几何学。这个题面的问题很大,因为,每一个问题都可以根据出题的不同情况采用不同的方法求得,都进行说明的话,可以写一本书。因此,我只用一种方法说民情况,其余的方法你可以根据原理,举一反三。
1、求二面角平面a和β所成的角:在讲这个问题之前,先要明确几个问题,二面角永远指的都是不大于90度的角;同理,直线与平面的夹角也是不大于90度的角。因此,二面角的三角函数值都是正数,没有负数。直线与平面的夹角的三角函数值也是如此。
根据上述所说的道理,二面角就等于两个平面的法向量的夹角。分别在a和β平面选择两条不相交的直线作为平面向量,a平面可以选取OA和OD,如果不知道A,D两点的坐标,你可以设单位向量OA^0={1,0,0}, OD^0={0,1,0}, 因为你所求的a平面平面法向量是垂直这个平面的方向,所求的只是方向,与数值大小无关。所以你设这两个平面向量的长度多少都可以,只与两个向量的差积方向有关与矢径长度无关。β平面选择OA,OB,B点坐标为:(Bx,By,Bz),na=OA^0xOD^0={1,0,0}x{0,1,0}={0,0,1}; 在这里要用到行列式,具体算法如下:
cos(a,^β)=nβ·na/(|nβ|*|na|)={0,Bz,By}·{}0,0,1}/(|nβ|*|na|)
=(0*0+Bz*0+By*1)/[√(0^+Bz^2+By)^2*√(0+0+1^2)]=By/√(Bz^2+By^2)。
二面角(a,^β)=arccos[By/√(Bz^2+By^2)]。
总结求二面角的过程,我们运用了行列式、差积、点积(包含了混合积)、两点间的距离(线段的求法)、法向量的求法、余弦值和角度的求法。
2、通过求直线AB与平面β的夹角,再强调一下线段的求法,线段的求法,就是把线段看作是向量,求矢径,也是求两点间的距离。A的坐标(Ax,Ay,Az)=(Ax,0,0), B-(Bx,By,Bz), 向量AB={Bx-Ax,By-Ay,Bz-Az}={Bx-Ax, By,Bz}, 矢径|AB|=√[(Bx-Ax)^2+(By-Ay)^2+(Bz-Az)^2];既是AB线段的长度,也是A、B两点间的距离。现在设AB与平面β夹角为γ:作OC//=AB,那么,OC=AB; OC与平面β的夹角γ,就是AB与平面β的夹角γ,而AC(AB)与法平面nβ的夹角为(90D-γ);sinγ=cos(90D-γ)=AC·nβ(|nβ|*|AC|)=[(Bx-Ax)*0+By*0+Bz*1]/{√[(Bx-Ax)^2+By^2+Bz^2]*√1}=Bz/√[(Bx-Ax)^2+By^2+Bz^2]。
3、因为所有的平面角和二面角都在区间[0,90D]的范围内。已知余弦值,可以利用三角函数公式来求其它三角函数:sinθ=√[1-(cosθ)^2], tanθ=sinθ/√[1-(cosθ)^2], cotθ=1/tanθ.
到此,题面的问题全部答完。但是,这只是基本的方法,要解决实际问题,必须多做题才能真正掌握做题的技巧,才可以把题做的简单而清晰。才能够体现出把复杂的问题简单化的数学思想,才可以领悟数学之美。