您现在的位置是: 首页 > 招生信息 招生信息
高考向量题目_高考向量经典例题
tamoadmin 2024-05-24 人已围观
简介1.一道高三文科数学题。向量及其应用。2.高三一道平面向量的题3.高考数学选择题向量 几 何4.高三向量题,急啊!!因为:|a+b|?=|a|?+2a*b+|b|?所以:2a*b=|a+b|?-|a|?-|b|?已知:向量a的模=13,向量b的模=19,|a+b|=24则:|a-b|?=|a|?-2a*b+|b|?=2|a|?+2|b|?-|a+b|?=2(13?+19?)-24?=2(169+3
1.一道高三文科数学题。向量及其应用。
2.高三一道平面向量的题
3.高考数学选择题向量 几 何
4.高三向量题,急啊!!
因为:|a+b|?=|a|?+2a*b+|b|?所以:2a*b=|a+b|?-|a|?-|b|?已知:向量a的模=13,向量b的模=19,|a+b|=24则:|a-b|?=|a|?-2a*b+|b|?=2|a|?+2|b|?-|a+b|?=2×(13?+19?)-24?=2×(169+361)-576=1060-576=484=22?所以解得|a-b|=22
一道高三文科数学题。向量及其应用。
设向量AB=a,AD=b,四边形ABCD是平行四边形,
∴向量AC=a+b,3|a|=2|b|,
∴OA=μ(AB+2AC)=μ(3a+2b),
在AD上截取AG=AB,设BG的中点为M,则
AM=(1/2)(a+2b/3),
OA=(3μ/2)AM,
设AB、CD的中点分别是E,F,
由OA+OB=λ(OC+OD)得OE=λOF,
∴O是直线AM与EF的交点M。
∴λ=1/2.
高三一道平面向量的题
c=a+tb
|c|^2 = (a+tb).(a+tb)
= |a|^2+t^2|b|^2+ 2t|a||b|cosθ
d(|c|^2)/dt = 2t|b|^2 +2|a||b|cosθ = 0
t =-|a|cosθ/ |b|
(|c|^2)'' =2|b|^2 > 0 ( min)
min |c| when t = |a|cosθ/ |b|
=|a|sinθ
t = -|a|cosθ/ |b|
c = a -[ |a|cosθ/ |b|] b
c.b = (a -[ |a|cosθ/ |b|] b ).b
= a.b - |a||b|cosθ =0
b,c的夹角 = π/2
高考数学选择题向量 几 何
因为AB向量比上AB向量的模是AB的单位向量,AC向量比AC向量的模是AC的单位向量(这是定理)。二者相加为向量AM,又AB向量加AC向量为2AM向量。列式子可轻易看出AB向量的模等于AC向量的模,又AB等于AC,所以该三角形为等边三角形。AB向量乘以BC向量为2·2·cos60*=2
我是一名大学生,希望帮助到你了
高三向量题,急啊!!
如图,设D为BC的中点
向量P0C*向量P0B=1/4[(向量P0B+P0C)^2-(P0B-P0C)^2]
?=1/4[(2P0D)^2-(2BD)^2]
?=P0D^2-BD^2
同理,向量PC*向量PB=PD^2-BD^2
又因为向量PC*向量PB》向量P0C*向量P0B
即 ?PD^2-BD^2》P0D^2-BD^2
即 PD》P0D
又因为PD与AB垂直时达最小
即P0D垂直于AB
又因为△P0DB相似△ABC
? 有AB/DB=2DB/P0B
?DB=根号3
在△PoDB中,DP0^2=(根号3)^2-1^2
? 解得,DP0=根号2
又h/DP0=CB/DB
解得h=2根号2,
即三角形的高为2根号2
∵点D是BC的中点
∴向量AB+AC=2AD
∵AB=xAE ,AC=yAF
∴xAE+yAF=2AD
∴x/2*AE+y/2*AF=AD
∵E,D,F三点共线
∴x/2+y/2=1
∵X,Y大于0
∴1/x + 4/y
=(1/x + 4/y)(x/2+y/2)
=5/2+2x/y+y/(2x)≥5/2+2=9/2
2x/y=y/(2x),y=2x时取等号
∴1/x + 4/y的最小值是9/2