1.天津数学高考第一道大题类似题,越多越好
2.天津高考数学试卷共有8道选择题,在每小题给出的四个选项中,只有一项是符合题目要求的,评分标准规定:
3.求天津市数学高考的考纲
纵观天津高考数学试卷,笔者总体感觉在引入新鲜元素的同时也保留了天津本地稳定为主的特征,试题简洁明快,特色鲜明,平凡问题考验真功夫,在考查基础知识的同时注重对思想方法与能力的考查,试卷从试题的综合性、应用性和创新性的角度设计了由易到难的整体布局,试题的难易分布梯度较为平缓,试题情景设置合理,紧扣教材选题的同时也有着相当的创新要素,对于考生能力的要求进一步提高。与2013年相比,今年试卷总体难度稍有上升。
今年高考试卷结构上很好地秉承了天津高考以稳为主的命题思路,题型分布和考点设置上没有太大变化,严格依照《考试说明》中规定的考查内容,准确把握考查要求,对基础知识的考查既注重全面又突出重点。
试卷每种题型均设置了数量较多的基础题,许多试题都是考查单一的知识点或是在最基础的知识交汇点上设置,例如试卷中的选择题第1、2、3、4题,填空题第9、10、11、12题,这部分试题就是通常意义上的送分题,考查考生的基本功,需要牢牢把握。
试卷还注意确保支撑数学知识体系的主干内容(如三角函数与平面向量、概率统计、立体几何、解析几何、数列和函数与导数)占有较高的比例。
下表是近四年天津高考对各主干模块的考查分值统计:
通过上表可以看出,我们会发现三角函数等几大板块部分作为高中学习的绝对重点,几年来总体权重变化也不是特别明显。这也说明考生备考要依纲靠本,把精力更多地投放在考纲中的重点基础知识进行针对性复习。
今年高考试卷依然突出了考教一致这一原则。试卷中选题很多是源于教材,有些试题可看出与教材中的例题、练习和习题融合、改造的痕迹。这种做法有利于中学教学回归教材,
真正实现教什么考什么,同时也要求今后的同学在学习或是备考时注意到教材的重要作用,针对教材知识进行思考综合。
一、中等题目减少,强调通性通法
2014天津高考还有一个显著的特征是试卷中等题比重在下降,在保证良好区分度与选拔功能的前提下逐步回归基础。在试题命题上注重解题思路起点低,入口宽,更加强调“通性通法”在解题中的运用,要求运用基本概念分析问题,运用基本公式运算求解,利用基本定理推理论证,这些要求在各题中都有所体现,但各有不同侧重。同时,还要求考生利用基本数学思想方法寻找解题思路,如试卷第7题需就题目中的绝对值来进行分类讨论分析,而第14题则需用到转化化归思想将函数零点问题转化为函数图象交点问题来考虑。试卷强调通性通法,有利于引导中学数学教学回归基础。
二、注重能力立意,更加注重创新
天津数学试题体现了《考试说明》规定的各项能力要求,运算求解能力贯穿试卷始终,空间想象能力考查也达到一定深度,推理论证能力和抽象概括能力依然是考查的重点,在区分考生时起到重要作用。试卷中依然注重应用意识与创新意识的考查,如第16题,以实际问题为背景,考查概率知识在实际问题中的简单应用;第7、14、20题构思与设问较为新颖,考查了学生的创新意识。
除以上几点外,今年天津卷最大的亮点在于引入了创新题型。此类题型在北京等其他省市经过多年尝试与摸索已经初步成型,并已逐渐形成一种命题趋势。这类题型的特征在于题干比较抽象,需要考生具有较强的理解力,同时在准确理解题意的基础上综合使用相应的知识进行解题。如第19题,在数列问题中引入了集合环境,以全新的角度设置问题,重在考查考生对设问的理解。第1问枚举帮助考生理解题意,而第2问的新意在于要求考生构造二者差值,这是对其不等关系进行实质性分析的基础,而对于该差值的极端化处理则是放缩法证明不等式的基本技巧。此题要求考生具备较强的信息转译能力和严密论证能力,是很好的创新试题。在天津以往的高考中压轴题基本上还是以常规题型为主,很少涉及这类创新题。
由以上变化我们不难看出,今后的天津高考将会坚持并进一步提高对应用意识和创新意识的考查力度,这也要求本地考生在学习备考过程中要把眼界放开,在立足教材以及基础题型的同时要兼顾创新意识的培养。创新题型作为全国各地高考的一个趋势,今后也有望在天津高考中占据一席之地,也希望本地考生提前做好准备。
三、难度区分合理,有利于高考选拔
天津高考数学试题分布由易到难、循序渐进,选择填空题重点考查基础知识和基本运算,解答前四题重点考查综合运用基础知识及基本方法的能力,后两道重点考查学生的思维能力与探究能力。试卷整体难度分布比较平缓,计算量适中,各类试题也是由易到难,具有较好的梯度,从而实现高考择优录筛选考生的根本目的。
试卷中通过合理设置选择填空题的难度,达到了考查考生能力的目的;而通过解答题设问由浅入深的设置,也加强了对不同层次考生的区分功能,如第18、20题,都是上手相对容易,但深入又有一定难度。如第20题,题干简洁,设问大气,学生审题不会有什么困难,第1问要求考生清楚函数单调性与零点存在性之间的关系,并由此建立不等式确定参数取值范围;但后两问要探究两根之比与两根之和的变化规律,就需要考生考虑到由前问结论中参数的取值范围,将其与函数值域进行联系,从而根据零点处参数的等量关系进行函数构造。整体上第2问借助了第1问的结论,第3问又借助了第2问的结论,命题上环环相扣,逻辑清晰,要求考生具有较强的抽象概括、推理论证以及分析问题解决问题的能力,同时考查学生的直观意识,具有很好的区分度与选拔性。
以上是笔者对于今年高考数学试卷的一些分析,可以看出试卷本身十分成功,可见命题人出题时考虑问题之周全。对于考生来说,只要考前复习充分,考试心态平和,相信都能取得良好的结果。同时试卷中体现出的诸多特点与变化,也值得今后的考生多加注意和思考。
最后,笔者衷心祝愿广大学子能取得优异的成绩,考入理想的大学。同时希望决战2015高考的新高三同学能倍加努力,稳扎稳打,在高考中也取得优异的成绩。
天津数学高考第一道大题类似题,越多越好
你还是去贴吧问下…大.家在学.校做都是做纸制.的,根.本不是电,.子的,谁也不会给你一题..题..手.打。即使有也要给你找试卷,拍照,上网上传等麻烦的步骤基本没人会去做,所..以别..干等了。
还有就是你可以在百度文库里搜题目,或者把题目打几十个字出来用百度直接搜索下,说不定能找到。或者你可以去出这本书的看下,上也可能有答案
天津高考数学试卷共有8道选择题,在每小题给出的四个选项中,只有一项是符合题目要求的,评分标准规定:
理想情况是,选择30分钟,填空10分钟。水平高一点的两项在半个小时。如果一般些的,在保证准确率的情况下40--50分钟,不能再多了,否则大题不可以答完,会有题看及思考时间都没有。会有无谓的失分。
求天津市数学高考的考纲
(Ⅰ)设选对一道“可判断2个选项是错误的”题目为A,
“可判断1个选项是错误的”该题选对为B,
“不能理解题意的”该题选对为C,
则P(A)=
,P(B)=
,P(C)=
,
∴该考生得40分的概率:
P=[P(A)]2?P(B)?P(C)=
×
×
=
.
(Ⅱ)①该考生所得分数ξ=20,25,30,35,40,
P(ξ=20)=[P(
)]2P(
)P(
)=
×
×
=
,
P(ξ=25)=
P(A)P(
)P(
)P(
)+[P(
)]2P(B)P(
)+[P(
)]2P(
)P(
)
=2×(
)2×
×
+
×
×
+
×
×
=
,
P(ξ=30)=[P(A)]2P(
)P(
)+
P(
)P(A)P(
)P(C)+[P(
)]2P(B)P(C)
=(
)2×
×
+2×
×
×
×
+2×
×
×
×
+(
)2×
×
=
,
P(ξ=35)=
P(A)P(
)P(B)P(C)+[P(A)]2P(
)P(
)
=2×
×
×
×
+(
)2×
×
+(
)2×
×
=
,
P(ξ=40)=1-
?
?
?
=
,
∴该考生得25分或30分的可能性最大.
②Eξ=20×
+25×
+30×
+35×
+40×
=
.
考试范围
(1)文科
《普通高中数学课程标准(实验)》中的必修课程内容和选修系列1内容。
数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。
数学2:立体几何初步、平面解析几何初步。
数学3:算法初步、统计、概率。
数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换。
数学5:解三角形、数列、不等式。
选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1-2:统计案例、推理与证明、数系的扩充及复数的引入、框图。
(2)理科
《普通高中数学课程标准(实验)》中的必修课程内容和选修系列2内容。
数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。
数学2:立体几何初步、平面解析几何初步。
数学3:算法初步、统计、概率。
数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换。
数学5:解三角形、数列、不等式。
选修2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量(简称空间向量)与立体几何。
选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入。
选修2-3:计数原理、统计案例、概率。