您现在的位置是: 首页 > 教育政策 教育政策
高考卷3数学答案_高考卷三数学答案
tamoadmin 2024-07-12 人已围观
简介1.2022全国乙卷理科数学真题及答案解析2.高三数学试卷分析3.求近几年数学高考试卷(带答案,最好是湖北省的)4.2005江西高考数学题及答案5.求2014年福建的高考数学卷及其答案,理科的6.2023高考数学答案什么时候出来7.想知道2011年数学高考试题和答案(浙江卷)8.高中数学2007年到2009年湖北理科数学高考试卷及解析 高考结束之后,各位考生和家长最想知道的就是考生考的怎么样,有很
1.2022全国乙卷理科数学真题及答案解析
2.高三数学试卷分析
3.求近几年数学高考试卷(带答案,最好是湖北省的)
4.2005江西高考数学题及答案
5.求2014年福建的高考数学卷及其答案,理科的
6.2023高考数学答案什么时候出来
7.想知道2011年数学高考试题和答案(浙江卷)
8.高中数学2007年到2009年湖北理科数学高考试卷及解析
高考结束之后,各位考生和家长最想知道的就是考生考的怎么样,有很多考生在考完很着急想要知道试题答案从而进行自我估分,下面是我为大家整理的关于2022年全国新高考I卷数学真题及答案,如果喜欢可以分享给身边的朋友喔!
2022年全国新高考I卷数学真题
2022年全国新高考I卷数学真题答案
高考数学七大考试技巧
一、提前进入“角色”
高考前一个晚上睡足八个小时,早晨吃好清淡早餐,按清单带齐一切用具,提前半小时到达考区,一方面可以 消除紧张 、稳定情绪、从容进场,另一方面也留有时间提前进入“角色”——让大脑开始简单的数学活动,进入单一的数学情境。如:
1.清点一下用具是否带齐(笔、橡皮、作图工具、、准考证等,用具由省考试院统一发放)。
2.把一些基本数据、常用公式、重要定理在脑子里“过过**”。
3.最后看一眼难记易忘的知识点。
4.互问互答一些不太复杂的问题。
二、精神要放松,情绪要自控
最易导致紧张、焦虑和恐惧心理的是入场后与答卷前的“临战”阶段,此时保持心态平衡的 方法 有三种:
①转移注意法:避开临考者的目光,把注意力转移到某一次你印象较深的数学模拟考试的评讲课上,或转移到对往日有趣、滑稽事情的回忆中。
②自我安慰法:如“我经过的考试多了,没什么了不起”,“考试,老师监督下的独立作业,无非是换一换环境”等。
③抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,(最好默念几遍:“阿弥陀佛或祖先保佑”呵呵,还真的管用)如此进行到发卷时。
三、迅速摸透“题情”
刚拿到试卷,一般心情比较紧张,不忙匆匆作答,可先从头到尾、正面反面通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作全面调查,一般可在十分钟之内做完三件事:
1.顺利解答那些一眼看得出结论的简单选择或填空题(建议第一题做两遍,直至答案一致为止,一旦解出,情绪立即会稳定)。
2.对不能立即作答的题目,可一面通览,一面粗略分为甲、已两类:甲类指题型比较熟悉、估计上手比较容易的题目,乙类是题型比较陌生、自我感觉比较困难的题目。
3.做到三个心中有数:对全卷一共有几道大小题有数,防止漏做题,对每道题各占几分心中有数,大致区分一下哪些属于代数题,哪些属于三角题,哪些属于综合型的题。
通览全卷是克服“前面难题做不出,后面易题没时间做”的有效 措施 ,也从根本上防止了“漏做题”。
四、信心要充足,暗示靠自己
答卷中,见到简单题,要细心,不要忘乎所以,谨防“大意失荆州”。面对偏难的题,要耐心,不能急。考试全程都要确定“人家会的我也会,人家不会的我也会”的必胜信念,使自己始终处于最佳竞技状态。
五、三先三后
在通览全卷、并作了简单题的第一遍解答后,情绪基本趋于稳定,大脑趋于亢奋,此后七八十分钟内就是最佳状态的发挥或收获丰硕果实的黄金季节了。实践证明,满分卷是极少数,绝大部分考生都只能拿下部分题目或题目的部分得分。因此,实施“三先三后”及“分段得分”的考试艺术是明智的。
1.先易后难。就是说,先做简单题,再做复杂题;先做甲类题,再做乙类题。当进行第二遍解答时(通览并顺手解答算第一遍),就无需拘泥于从前到后的顺序,应根据自己的实际,跳过啃不动的题目,从易到难。
2.先高(分)后低(分)。这里主要是指在考试的后半段时要特别注重时间效益,如两道题都会做,先做高分题,后做低分题,以使时间不足时少失分;到了最后十分钟,也应对那些拿不下来的题目就高分题“分段得分”,以增加在时间不足前提下的得分。
3.先同后异。就是说,可考虑先做同学科同类型的题目。这样思考比较集中,知识或方法的沟通比较容易,有利于提高单位时间的效益。一般说来,考试解题必须进行“兴奋灶”的转移,思考必须进行代数学科与几何学科的相互换位,必须进行从这一章节到那一章节的跳跃,但“先同后异”可以避免“兴奋灶”过急、过频和过陡的跳跃。
三先三后,要结合实际,要因人而异,谨防“高分题久攻不下,低分题无暇顾及”现象发生。
六、一慢一快
就是说,审题要慢,做题要快。
题目本身是“怎样解这道题”的信息源,所以审题一定要逐字逐句看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正看清题意。解题实践表明,条件预示可知并启发解题手段,结论预告需知并诱导解题方向。凡是题目未明显写出的,一定是隐蔽给予的,只有细致的审题才能从题目本身获得尽可能多的信息,这一步不要怕慢,建议将题目读两遍。
找到解题方法后,书写要简明扼要,快速规范,不要拖泥带水,啰嗦重复,尤忌画蛇添足。一般来说,一个原理或者一个定理公式写一步就可以了,至于不是题目考查的`过渡知识,可以直接写出结论。高考允许合理省略非关键步骤。
为了提高书写效率,应尽量使用数学语言、符号,这比文字叙述要节省而严谨。
七、分段得分
对于同一道题目,有的人理解得深,有的人理解得浅,有的人解决得多,有的人解决得少。为了区分这种情况,高考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。
鉴于这一情况,高考中对于难度较大的题目采用“分段得分”的策略实为一种高招儿。其实,考生的“分段得分”是高考“分段评分”的逻辑必然。“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。
1.对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的——会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤——对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。高考阅卷 经验 表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。
2.对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。
①缺步解答
如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”,确实是个好主意。
②跳步答题
解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。
由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。
也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。
③退步解答
“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。
④辅助解答
一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举,既必不可少而又不困难。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。
书写也是辅助解答。“书写要工整、卷面能得分”是说第一印象好会在阅卷老师的心理上产生光环效应:书写认真→学习认真→成绩优良→给分偏高。
有些选择题,“大胆猜测”也是一种辅助解答,实际上猜测也是高考必须考查的一种能力——合情推理能力。
2022年全国新高考I卷数学真题及答案出炉相关 文章 :
★ 2022全国新高考I卷语文试题及答案
★ 2022年全国新高考Ⅰ卷英语试题及答案最新
★ 2022年全国一卷高考真题试卷试题
★ 2022年北京高考数学试卷
★ 2022年全国新高考II卷数学真题及答案
★ 2022年新高考Ⅱ卷数学真题试卷及答案
★ 2022全国甲卷高考数学文科试卷及答案解析
★ 2021新高考全国1卷数学真题及答案
★ 2022全国新高考Ⅰ卷英语真题及答案解析
★ 2022高考甲卷数学真题试卷及答案
2022全国乙卷理科数学真题及答案解析
绝密★启用前
2008年普通高等学校招生全国统一考试(江苏卷)
数 学
本试卷分第I卷(填空题)和第II卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.
注意事项:
1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的
准考证号、姓名,并将条形码粘贴在指定位置上.
2.选择题答案使用2B
铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择
题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.
4.保持卡面清洁,不折叠,不破损.
5.作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑.
参考公式:
样本数据 , , , 的标准差
其中 为样本平均数
柱体体积公式
其中 为底面积, 为高
一、填空题:本大题共1小题,每小题5分,共70分.
1. 的最小正周期为 ,其中 ,则 = ▲ .
解析本小题考查三角函数的周期公式.
答案10
2.一个骰子连续投2 次,点数和为4 的概率 ▲ .
解析本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故
答案
3. 表示为 ,则 = ▲ .
解析本小题考查复数的除法运算.∵ ,∴ =0, =1,因此
答案1
4.A= ,则A Z 的元素的个数 ▲ .
解析本小题考查集合的运算和解一元二次不等式.由 得 ,∵Δ<0,∴集合A 为 ,因此A Z 的元素不存在.
答案0
5. , 的夹角为 , , 则 ▲ .
解析本小题考查向量的线性运算.
= , 7
答案7
6.在平面直角坐标系 中,设D是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率 ▲ .
解析本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此.
答案
7.算法与统计的题目
8.直线 是曲线 的一条切线,则实数b= ▲ .
解析本小题考查导数的几何意义、切线的求法. ,令 得 ,故切点(2,ln2),代入直线方程,得,所以b=ln2-1.
答案ln2-1
9在平面直角坐标系中,设三角形ABC 的顶点分别为A(0,a),B(b,0),C (c,0) ,点P(0,p)在线段AO 上(异于端点),设a,b,c, p 均为非零实数,直线BP,CP 分别交AC , AB 于点E ,F ,一同学已正确算的OE的方程: ,请你求OF的方程:
( ▲ ) .
解析本小题考查直线方程的求法.画草图,由对称性可猜想填 .事实上,由截距式可得直线AB: ,直线CP: ,两式相减得 ,显然直线AB与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程.
答案
10.将全体正整数排成一个三角形数阵:
1
2 3
4 5 6
7 8 9 10
. . . . . . .
按照以上排列的规律,第n 行(n ≥3)从左向右的第3 个数为 ▲ .
解析本小题考查归纳推理和等差数列求和公式.前n-1 行共有正整数1+2+…+(n-1)个,即 个,因此第n 行第3 个数是全体正整数中第 +3个,即为 .
答案
11.已知 , ,则 的最小值 ▲ .
解析本小题考查二元基本不等式的运用.由 得 ,代入 得
,当且仅当 =3 时取“=”.
答案3
12.在平面直角坐标系中,椭圆 1( 0)的焦距为2,以O为圆心, 为半径的圆,过点 作圆的两切线互相垂直,则离心率 = ▲ .
解析设切线PA、PB 互相垂直,又半径OA 垂直于PA,所以△OAP 是等腰直角三角形,故 ,解得 .
答案
13.若AB=2, AC= BC ,则 的最大值 ▲ . ?
解析本小题考查三角形面积公式、余弦定理以及函数思想.设BC= ,则AC= ,
根据面积公式得 = ,根据余弦定理得
,代入上式得
=
由三角形三边关系有 解得 ,
故当 时取得 最大值
答案
14. 对于 总有 ≥0 成立,则 = ▲ .
解析本小题考查函数单调性的综合运用.若x=0,则不论 取何值, ≥0显然成立;当x>0 即 时, ≥0可化为,
设 ,则 , 所以 在区间 上单调递增,在区间 上单调递减,因此 ,从而 ≥4;
当x<0 即 时, ≥0可化为 ,
在区间 上单调递增,因此 ,从而 ≤4,综上 =4
答案4
二、解答题:解答应写出文字说明,证明过程或演算步骤.
15.如图,在平面直角坐标系 中,以 轴为始边做两个锐角 , ,它们的终边分别与单位圆相交于A,B 两点,已知A,B 的横坐标分别为 .
(Ⅰ)求tan( )的值;
(Ⅱ)求 的值.
解析本小题考查三角函数的定义、两角和的正切、二倍角的正切公式.
由条件的 ,因为 , 为锐角,所以 =
因此
(Ⅰ)tan( )=
(Ⅱ) ,所以
∵ 为锐角,∴ ,∴ =
16.在四面体ABCD 中,CB= CD, AD⊥BD,且E ,F分别是AB,BD 的中点,
求证:(Ⅰ)直线EF ‖面ACD ;
(Ⅱ)面EFC⊥面BCD .
解析本小题考查空间直线与平面、平面与平面的位置关系的判定.
(Ⅰ)∵ E,F 分别是AB,BD 的中点,
∴EF 是△ABD 的中位线,∴EF‖AD,
∵EF 面ACD ,AD 面ACD ,∴直线EF‖面ACD .
(Ⅱ)∵ AD⊥BD ,EF‖AD,∴ EF⊥BD.
∵CB=CD, F 是BD的中点,∴CF⊥BD.
又EF CF=F,∴BD⊥面EFC.∵BD 面BCD,∴面EFC⊥面BCD .
17.某地有三家工厂,分别位于矩形ABCD 的顶点A,B 及CD的中点P 处,已知AB=20km,
CB =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO,BO,OP ,设排污管道的总长为 km.
(Ⅰ)按下列要求写出函数关系式:
①设∠BAO= (rad),将 表示成 的函数关系式;
②设OP (km) ,将 表示成x 的函数关系式.
(Ⅱ)请你选用(Ⅰ)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短.
解析本小题主要考查函数最值的应用.
(Ⅰ)①由条件知PQ 垂直平分AB,若∠BAO= (rad) ,则 , 故
,又OP= 10-10ta ,
所以 ,
所求函数关系式为
②若OP= (km) ,则OQ=10- ,所以OA =OB=
所求函数关系式为
(Ⅱ)选择函数模型①,
令 0 得sin ,因为 ,所以 = ,
当 时, , 是 的减函数;当 时, , 是 的增函数,所以当 = 时, 。这时点P 位于线段AB 的中垂线上,且距离AB 边
km处。
18.设平面直角坐标系 中,设二次函数 的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:
(Ⅰ)求实数b 的取值范围;
(Ⅱ)求圆C 的方程;
(Ⅲ)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.
解析本小题主要考查二次函数图象与性质、圆的方程的求法.
(Ⅰ)令 =0,得抛物线与 轴交点是(0,b);
令 ,由题意b≠0 且Δ>0,解得b<1 且b≠0.
(Ⅱ)设所求圆的一般方程为
令 =0 得 这与 =0 是同一个方程,故D=2,F= .
令 =0 得 =0,此方程有一个根为b,代入得出E=―b―1.
所以圆C 的方程为 .
(Ⅲ)圆C 必过定点(0,1)和(-2,1).
证明如下:将(0,1)代入圆C 的方程,得左边=0 +1 +2×0-(b+1)+b=0,右边=0,
所以圆C 必过定点(0,1).
同理可证圆C 必过定点(-2,1).
19.(Ⅰ)设 是各项均不为零的等差数列( ),且公差 ,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:
①当n =4时,求 的数值;②求 的所有可能值;
(Ⅱ)求证:对于一个给定的正整数n(n≥4),存在一个各项及公差都不为零的等差数列 ,其中任意三项(按原来顺序)都不能组成等比数列.
解析本小题主要考查等差数列与等比数列的综合运用.
(Ⅰ)①当n=4 时, 中不可能删去首项或末项,否则等差数列中连续三项成等比数列,则推出d=0.
若删去 ,则有 即
化简得 =0,因为 ≠0,所以 =4 ;
若删去 ,则有 ,即 ,故得 =1.
综上 =1或-4.
②当n=5 时, 中同样不可能删去首项或末项.
若删去 ,则有 = ,即 .故得 =6 ;
若删去 ,则 = ,即 .
化简得3 =0,因为d≠0,所以也不能删去 ;
若删去 ,则有 = ,即 .故得 = 2 .
当n≥6 时,不存在这样的等差数列.事实上,在数列 , , ,…, , , 中,
由于不能删去首项或末项,若删去 ,则必有 = ,这与d≠0 矛盾;同样若删
去 也有 = ,这与d≠0 矛盾;若删去 ,…, 中任意一个,则必有
= ,这与d≠0 矛盾.
综上所述,n∈{4,5}.
(Ⅱ)略
20.若 , , 为常数,
且
(Ⅰ)求 对所有实数成立的充要条件(用 表示);
(Ⅱ)设 为两实数, 且 ,若
求证: 在区间 上的单调增区间的长度和为 (闭区间 的长度定义为 ).
解析本小题考查充要条件、指数函数与绝对值函数、不等式的综合运用.
(Ⅰ) 恒成立
(*)
因为
所以,故只需 (*)恒成立
综上所述, 对所有实数成立的充要条件是:
(Ⅱ)1°如果 ,则的图象关于直线 对称.因为 ,所以区间 关于直线 对称.
因为减区间为 ,增区间为 ,所以单调增区间的长度和为
2°如果 .
(1)当 时. ,
当 , 因为 ,所以 ,
故 =
当 , 因为 ,所以
故 =
因为 ,所以 ,所以 即
当 时,令 ,则 ,所以 ,
当 时, ,所以 =
时, ,所以 =
在区间 上的单调增区间的长度和
=
(2)当 时. ,
当 , 因为 ,所以 ,
故 =
当 , 因为 ,所以
故 =
因为 ,所以 ,所以
当 时,令 ,则 ,所以 ,
当 时, ,所以 =
时, ,所以 =
在区间 上的单调增区间的长度和
=
综上得 在区间 上的单调增区间的长度和为
高三数学试卷分析
随着近几年高考人数增加,高考压力仍处于高位,很多人都想知道理科高考试卷,以方便自己参考核对实际考试情况。下面是我为大家收集的关于2022全国乙卷理科数学真题及答案解析。希望可以帮助大家。
2022全国乙卷理科真题及答案解析
高考理科综合的答题有哪些技巧呢
一、顺序做题:按学科的顺序做题比较好。因为理综是同一学科内的综合,而三科的知识体系不同、思维 方法 不同、答题的思路也不尽相同。按科目答题,可以使自己的思路有个连续性,从而提高做题的准确性。在这三科中,先做自己强势学科,再做弱势学科。这样在最短的时间内完成并获得分数,又为弱势科目留下更多的时间。
二、缜密审题:通读全题。不但要读题干,还要读题目所要解答的问题,要全面、正确地理解题意,弄清题目要求和解答内容。
审关键词。如化学试题中的“过量”“少量”“无色”“酸性”“碱性”“充分反应”“短周期”等,物理试题中的“静止”“匀速”“自由落体”等词。
审题目要求。如:写“电子式”“结构简式”“名称”“化学方程式”“离子方程式”等
审解题突破口。即解题的切入点,是解题的关键信息,特别是各类推断题、有机合成题等。
审有效数字。使用仪器的精度:如滴定管0.01mL;已知数据的显示:如称取样品9.50g;题目中的要求:如结果保留两位有效数字。
审题型。试卷在题序中并没有标明题型,但同样问题有不同的问法,就有不同的解答要求。因此题型决定出题的方向、解题的方法、结果表达的形式等。题型混编是高考题的特点。
三、先易后难:解题时要先易后难,这样可以增强自信心。若碰到难题,一时难以解答,可以暂时跳过,在草纸上作好记录,以防遗忘。容易的题完成后,节省下的时间,再攻克难题。
有些考生看到试题比较简单或比较熟悉就很兴奋,失去了警惕性而粗心大意,有时看起来很容易很熟悉的试题,稍改变关键词或条件,就会出错。这样的题目恰恰是最容易失分的。这里应该想到,一般来说高考题与日常训练题完全相同的可能性极小,所以必须认真对待,决不能丢分。
还有些考生一看到试题难度较大,就产生了畏难情绪,影响了答题的信心。这时要清楚认识到:你觉得难,别人也不轻松!只要静下心来,仔细认真地审题、作图、深入分析,看似困难的题就能迎刃而解。
涉及到信息题、知识迁移题、新情景创新题等,信息量大,文字长,要善于抓住提炼有用信息,这些题目大都属于“高起点,低落点”,所用到的知识和解题方法,都是日常学到的基本知识及方法,一般解答比较简单。
遇到确实不会做的题目,如果不倒扣分,也不能空白。计算题:应该把部分思路用学科语言(定理、定律的表达式等)表示出来,涉及的化学方程式写出来;选择题:把自己认为最有可能的答案选出来。
若时间很紧张,又一时不能完全解读,就要勇敢的舍去,余下的时间检查会做的题,以确保尽量不失分。
四、第Ⅰ卷答题要求稳
做Ⅰ卷时要心态平和,速度不要过快。此类题采用的方法也较多,技巧性很强。如:守恒法、始终态法、关系式法、作图法等等。生物、化学题是单选, 对于没有把握的题,可利用采取排除法、推理法;物理题答案为一至两个,在没有把握的情况下,确定一个答案后,就不要再猜 其它 答案,否则一个正确,一个错误,结果还是零分。
五、第Ⅱ卷答题要规范
Ⅱ卷答题的规范性是考生应高度重视的问题,不规范表达是导致失分的关键。如化学方面的“pH值”写成“PH值”;化学键连接的位置不准确,如:次氯酸的结构式为:“H—O—Cl”写成“H—Cl—O”;专用名词出现错别字,如“苯”写成“笨”,“坩埚”写成“钳锅”;方程式不配平、或者配平但没有化成最简比、或没有注明反应条件等;语言描述不准确等等问题。
规范表达主要包括:符合题目要求的表达;符合学科特点的表达;符合书写习惯的表达等等。
一些固定格式的语言表达也要掌握:
某一个装置的作用,一般站在两个方面回答:有利于……(这样装配的优点),以防止……(不这样装配的不足)。
实验中得到某沉淀要测其质量,必须按过滤、洗涤、干燥、称量的顺序进行等等……
在叙述的过程中思路要清晰,逻辑关系要严密,表述要准确;训练文字表达能力从基础做起,从字、词、句、专业语言书写,努力达到言简意赅,回答问题要切中要点,抓住关键。
六、确保解题准确率
理综试题难度较大,答题时间很紧,全面复查的可能性不大。所以解题时要准确到位,提高一次性答题的准确率,不要寄希望于复查上。同时要相信自己的第一印象,在没有特别把握的情况下,最好不要随便改动第一次的答案。在有时间复查的情况下,应该重点对首先解答的几道题复查,因为开始答题时精神紧张,思路往往会受到影响,出错的几率较大。
高考完以后应该干什么?
1、放松心情,好好休息
高中三年,我们一直在熬夜,一直在起早。高考结束之后,就能好好的休息一下了!可以选择用三天的时间好好睡觉,整理内务,把用过的学习材料整理一下,送给学弟学妹。网上疯传的撕书、撕卷子的发泄方式有辱斯文。考完一定要让自己得到放松和心情的调整。
2、考驾照
无论有没有买车计划,学会开车,将是未来生活一项必备的技能。大学期间,业余时间可以用来看书、参加社团活动、进行 社会实践 ,以完成自我增值。进入工作岗位,工作压力的增加及不固定的休息时间,很难在短时间内完成驾校学习。所以,这3个月是学驾校的时期。
3、看看喜欢的书
没有了考试大纲,可以尽情地看自己感兴趣的书;没有了标准答案,可以放肆地批判性阅读,读一些“无用”的书。阅读经典的作品,开拓自己的思维和视野,要知道,大学可是藏龙卧虎的地方,而读书是提高个人修为的方式。
4、发展一项 爱好
高中因为学习,不得不暂时舍弃自己的爱好,这3个月就是个好机会让你重新拾起。学一件乐器,练练书法,打打球、跳跳 街舞 、绣个 十字绣 。做喜欢做的事,争取发展成特长。以后会发现,有特长的人拥有更多机会。
5、给自己一次 毕业 旅行
旅行对于人的成长无疑是巨大的,前期的路线规划、消费规划、住宿预订或干脆搭帐篷;路途中遇到的形形,或人、或事、或物;旅程后的自我 总结 。我想,这也是给高考完的孩子们的一次成年之旅。学会去承担责任,学会去做选择,学会把握和放弃,学会坚持。
6、规划未来
休息够了也玩够了,接下来就是要好好规划一下自己的未来了。高考时人生的一个转折点,意味着新生活的开始,无论是选择继续升学还是进入社会,都应该有自己的思量。
7、准备填报志愿事宜
高考结束之后随之而来的事情就是填报志愿,俗话说7分靠成绩,三分靠志愿,如果我们没能提前做好准备,填报志愿上出了差错,就很容易让自己出现落榜的现象。
8、向陪伴的人说声“谢谢”
感恩的心意永远不会迟到。六月季,既是毕业季,也是感恩季,感恩老师,感恩父母,感恩一直给与鼓励、一直陪伴身边、一直默默付出的亲人和朋友。多去看望年迈的爷爷奶奶,外公外婆,在这无拘无束的时光里多陪陪他们。
2022全国乙卷理科真题及答案解析相关 文章 :
★ 2022高考全国乙卷政治卷真题及答案
★ 2022年全国乙卷高考文科数学试卷及答案
★ 2022年全国乙卷高考作文范文2篇
★ 2022年全国乙卷高考数学(文)真题及答案
★ 2022高考全国乙卷语文试题答案一览
★ 2022全国乙卷高考语文真题及答案(模拟)
★ 2022全国新高考II卷语文试题及答案解析
★ 高考现代文阅读真题及答案解析
★ 2022年新高考Ⅰ卷语文题目与答案参考
★ 全国乙卷高考作文《跨越,再跨越》2022(10篇)
求近几年数学高考试卷(带答案,最好是湖北省的)
高三数学试卷分析1
一、试卷特点分析
1.覆盖知识面广,重点考查主干
除了概率与统计以外,试题全面覆盖教材中知识模块,知识条目的覆盖率在50%左右。除主干知识重点考查外,已广泛涉及复数、集合、三视图,程序框图、逻辑与推理、排列组合、线性规划、平面向量等。还注重了数学的现实情境和历史文化,如理科第7、9、14、18题,文科第5、19题。
试卷穾出学科的主干内容:函数与导数、三角、数列、立体几何、解析几何以及不等式在试卷中占有较高的比例,整体结构合理,达到必要的考查深度。
试卷还注意知识交汇的考查,如理科第5、14题 ,文科第7、11、19题。
2.注重思想方法,突显能力素养
七个基本数学思想在试卷中都有涉及。解题方法有坐标法、三角法、向量法、待定系数法、代入法、消元法、配方法、换元法等。
六大数学核心素养:运算求解能力在绝大多数题目中都有体现,逻辑推理也有鲜明体现,直观想象体现在用数形结合的题目中,数学建模与数据分析是对现实问题进行抽象,用数学语言表达和解决问题的过程。同时也自然考查了阅读理解和知识迁移能力,也关注到数学的应用。
3.贴近教材提高,增大思维难度
试卷的知识构成、题型构成严格按照考纲命制,有近80%的题目体现教材的基础知识、基本技能与基本方法。选填题多数题目直接来自教材的基本概念、基本方法、基本运算或只做简单的变形,起点不高,坡度不陡,大多只涉及两三个知识条目,仅进行两三步演算,切合多数学生实际,虽然后两三题加大了思维量和运算量,但还属中档偏难一点。选择题思维量较大的理科第10、11、12题,文科第8、11、12题。填空题思维量较大的理科第15、16题,文科第15、16题。解答题思维量与运算量较大的理科第18(2)、20、21题,文科第19(2)、20、21题。
4.体现目标层次,文理差异互补
每类题型易中难搭配,从易到难。
文理科试卷除了四个小题(文、理第3题,文10理6,文理第13题,文14理4)及二选一的第22题完全相同外,其他题目都不相同。实现差异主要是撤换文科不考内容(如排列组合),降低题目难度(姐妹题)及调换前后位置三种形式。对理科少考的指数函数问题,文科多考一点。
5.重视数学文化,呈现创新元素
新考纲突出了增加数学文化内容,理科试卷在考查数学文化方面做了一些努力和尝试。通过对材料的创新设计使考生深刻地认识到中华民族优秀传统文化中注重算法的特点,为试卷注入了新的活力。
试题中出现中国古代求解一类大衍问题的方法。大衍问题源于《孙子算经》中的“物不知数”问题:“今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”这是属于现代数论中求解一次同余式方程组问题。宋代数学家秦九韶在《数书九章》(1247年成书)中对此类问题的解法作了系统的论述,并称之为大衍求一术。德国数学家C.F.高斯是在1801年才建立起同余理论的,大衍求一术反映了中国古代数学的高度成就。在我国古代劳动人民中,长期流传着“隔墙算”、“剪管术”、“秦王暗点兵”等数学游戏。有一首“孙子歌”,甚至远渡重洋,输入日本:
“三人同行七十稀,五树梅花廿一枝,
七子团圆正半月,除百零五便得知。”
这些饶有趣味的数学游戏,以各种不同形式,介绍世界闻名的“孙子问题”的解法,通俗地反映了中国古代数学一项卓越的成就。"孙子问题”在现代数论中是一个一次同余问题,它最早出现在我国公元四世纪的数学著作《孙子算经》中。《孙子算经》卷下“物不知数”题说:有物不知其数,三个一数余二,五个一数余三,七个一数又余二,问该物总数几何?显然,这相当于求不定方程组N=3x+2,N=5y+3,N=7z+2的正整数解N,或用现代数论符号表示,等价于解下列的一次同余组:N 2(mod3) 3(mod5) 2(mod7)②《孙子算经》所给答案是N=23。由于孙子问题数据比较简单,这个答数通过试算也可以得到。但是《孙子算经》并不是这样做的。“物不知数”题的术文指出解题的方法:三三数之,取数七十,与余数二相乘;五五数之,取数二十一,与余数三相乘;七七数之,取数十五,与余数二相乘。将诸乘积相加,然后减去一百零五的倍数。列成算式就是:
N=70×2+21×3+15×2-2×105。
这里105是模数3、5、7的最小公倍数,容易看出,《孙子算经》给出的是符合条件的最小正整数。对于一般余数的情形,《孙子算经》术文指出,只要把上述算法中的余数2、3、2分别换成新的余数就行了。以R1、R2、R3表示这些余数,那么《孙子算经》相当于给出公式
N=70×R1+21×R2+15×R3-P×105(p是整数)。
试卷通过设置综合性、开放性、探索性试题,具有情境创新、情境多样、思维灵活的特点,既考查了学生的基本知识、基本技能,又考查了学生基本思想、基本体验活动,穾出考查学生的创新能力。
二、对下一阶段精准备考,高效复习的建议
第一:进一步夯实基础
做到百分之百的掌握,一清二楚的理解,准确无误的应用,融汇贯通的领悟。
第二:更重视通性通法
回归朴素本原,淡化特殊技巧,掌握应用概念、性质、定理等解决问题的基本方法、基本技能,也就是应用数学思想分析问题、理解问题、把握问题、探寻解题方法的基本思维方法。
第三:最重要的是形成数学核心素养
以基本能力加综合能力的培养为导向,统领三基的落实,在知识深化理解、应用中提升能力,形成素荞。
第四:再强调回归教材
对教材的例习题、相关结论要熟悉,有的结论虽不能作为定理公式应用,但可以启发思路,简化思维过程。
第五:特穾出自牫解决问题的"独立性"
面对试题需要考生自我分析问题、自我判断、自我选择方法、遇到困难自我突围。这就要求学生具有独立思考的能力、选择简捷解题方法的辨别能力、逻辑严谨的表达能力,判断结论答案合理正确的判断能力,而这些能力需在平时的解题过程中学习、训练,在教师引导下的自我反思感悟,有了自已的认识与体验,从而真正做到精准备考、高效复习。
高三数学试卷分析2选择题
本次西城区二模考试的选择题排布如下:1、集合,2、向量,3、函数值域,4、抛物线,5、不等式与逻辑用语,6、线性规划,7、三视图,8、函数参数的取值范围。其中第5题很多学生以前应该做过。这些题目基本上就是以前高频问题进行的简单改编。第8题,需要学生对于特殊函数、不等式、及范围问题的解题技巧能够综合掌握。当然,对学生而言,必须要首先把基本题目做好,如果里面出现问题,比如第4题不熟悉抛物线的焦准距与参数的关系,第7题三视图还原还有问题等,则需加以重点强化。
填空题
填空题考察的内容排布如下:9、复数,10、程序框图,11、解三角形,12、直线和圆,13、分段函数,14、计数原理。
第9题考查了“共轭”的概念,帮助学生们进一步检查知识掌握的完整性。第12题,涉及到“对称”的概念,学生们需要抓住“对称”这个条件对应的代数转化。13题分段函数,一定要熟练掌握数形结合的分析方法,注意填空题有可能会有多解。14题是一个篇幅比较大的题目,一方面,考察学生的阅读和关键数据提炼能力,另外,需要学生的逻辑思维比较清晰,必要时也可画图辅助分析。此外,学生能够有良好的心理素质、足够的信心去处理题目也是必要的。实际上题目并不难。
解答题
大题方面,15题考查的是一个正切函数,在三角这个模块的高考考察中出现频次要低一些,学生需注意“锐角”条件及规范的解答过程。16题的统计概率,题材为“餐厅满意度调查”,里面有直方图和频数分布表,该图是学生平时训练比较多的模式,理解难度比一模要简单一些,问法也较一模简单,多数学生可以做好。17题的`混合数列求和是最简单的模式,一个等差数列加上一个等比数列,构成一个新的数列,只需要注意审题,第二问的情况里面,第一问里的条件不成立。18题立体几何,包括垂直、平行的证明,以及一个是否存在类的问题,非常经典的构造,考生需注意解答过程中书写规范,以及加快分析速度节约解题时间。
最后说一下经常做压轴大题的导数与圆锥。今年西城二模导数为19题,圆锥作为最后一题。从考法上来说,19题的导数模型比较复杂,有分式、有对数,第二小问的证明“极小值大于极大值”,与以往相比具有一定新颖性,而证明题对学生也具有相当的挑战,很多学生从思路到过程平时练得都比较少。二模之后,对于基本知识掌握到一定程度的学生而言,需要着重强化证明题。
第20题,三个小问分别是标准方程、面积最值,线段大小关系判断。本题是经典圆锥曲线构造,分析难度一般低于导数最为最后一题的情形,但对考生数学量的表达能力与计算能力的要求会比较高。在最后的阶段,学生们需要再次巩固计算能力,保持手感,以应对高考中可能出现的计算量大的问题。
总体而言,本次西城二模出题比较“稳重”,很好地检验了学生的基本功及应对较热门考察套路的能力。对于水平较高的学生,做好选填大题的压轴题目,能够起到一定的训练效果,同时,注意后期加强证明题的练习,加强答题过程细节的练习,及时总结失分原因并提炼“考前写给自己的最后总结”,注意合理安排时间,寻找对提分“增量”最大的点,加以强化,注意解题时间分配的监测以思考遇到难题时的应对策略。希望考生们,能在最后一个月的高考冲刺中,抓住最后可以强化的点,再做出一些突破,并调整好状态,在高考中考出理想成绩。
2005江西高考数学题及答案
2010年普通高等学校招生全国统一考试(湖北卷)
数学(理工类)
本试卷共4页,三大题21小题,全卷满分150分。考试用时120分钟。
★祝考试顺利★
注意事项:
1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上。并将准考证号条形码横贴在答题卡的指定位置。在用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷、草稿纸上无效。
3.填空题和解答题的作答:用0.5毫米黑色签字笔直接在答题卡上对应的答题区域内。答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 为虚数单位,则=
A.- B.-1 C. D.1
2.已知,则=
A. B. C. D.
3.已知函数,若,则x的取值范围为
A. B.
C. D.
4.将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为n,则
A. n=0 B. n=1 C. n=2 D. n 3
试卷类型:A
5.已知随机变量服从正态分布,且P(<4)=,则P(0<<2)=
A.0.6 B.0.4 C.0.3 D.0.2
6.已知定义在R上的奇函数和偶函数满足(>0,且).若,则=
A.2 B. C. D.
7.如图,用K、、三类不同的元件连接成一个系统。当正常工作且、至少有一个正常工作时,系统正常工作,已知K、、正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为
A.0.960 B.0.864 C.0.720 D.0.576
8.已知向量a=(x+z,3),b=(2,y-z),且a⊥?b.若x,y满足不等式,则z的取值范围为
A..[-2,2] B.[-2,3] C.[-3,2] D.[-3,3]
9.若实数a,b满足且,则称a与b互补,记,那么是a与b互补的
A.必要而不充分的条件 B.充分而不必要的条件
C.充要条件 D.即不充分也不必要的条件
10.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变。假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:,其中M0为t=0时铯137的含量。已知t=30时,铯137含量的变化率是-10In2(太贝克/年),则M(60)=
A.5太贝克 B.75In2太贝克
C.150In2太贝克 D.150太贝克
二、填空题:本大题共5小题,每小题5分,共25分。请将答案填在答题卡对应题号的位置上,一题两空的题,其中答案按先后次序填写。答错位置,书写不清,模棱俩可均不给分。
11. 的展开式中含的项的系数为
12.在30瓶饮料中,有3瓶已过了保质期。从这30瓶饮料中任取2瓶,则至少取到一瓶已过保质期的概率为 。(结果用最简分数表示)
13.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为 升。
试卷类型A
14.如图,直角坐标系所在平面为,直角坐标系(其中与轴重合)所在的平面为,。
(Ⅰ)已知平面内有一点,则点在平面内的射影的坐标为 ;
(Ⅱ)已知平面内的曲线的方程是,则曲线在平面内的射影的方程是 。
15. 给个自上而下相连的正方形着黑色或白色。当时,在所有不同的着色方案中,黑色正方形互不相连的着色方案如下图所示:
由此推断,当时,黑色正方形互不相连的着色方案共有 种,至少有两个黑色正方形相连的着色方案共有 种,(结果用数值表示)
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.
16.(本小题满分10分)
设的内角所对的边分别为,已知
(Ⅰ)求的周长
(Ⅱ)求的值
17. (本小题满分12分)
提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流速度x 的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度v是车流密度x的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求最大值(精确到1辆/每小时)
18. (本小题满分12分)
如图,已知正三棱柱的各棱长都是4,是的中点,动点在侧棱上,且不与点重合.
(Ⅰ)当=1时,求证:⊥;
(Ⅱ)设二面角的大小为,求的最小值.
19.(本小题满分13分)
已知数列的前项和为,且满足:, N*,.
(Ⅰ)求数列的通项公式;
(Ⅱ)若存在 N*,使得,,成等差数列,是判断:对于任意的N*,且,,,是否成等差数列,并证明你的结论.
20. (本小题满分14分)
平面内与两定点,连续的斜率之积等于非零常数的点的轨迹,加上、两点所成的曲线可以是圆、椭圆成双曲线.
(Ⅰ)求曲线的方程,并讨论的形状与值得关系;
(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,设、是的两个焦点。试问:在撒谎个,是否存在点,使得△的面积。若存在,求的值;若不存在,请说明理由。
21.(本小题满分14分)
(Ⅰ)已知函数,,求函数的最大值;
(Ⅱ)设…,均为正数,证明:
(1)若……,则…;
(2)若…=1,则……。
求2014年福建的高考数学卷及其答案,理科的
2005年江西高考数学试卷(理科)
一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合 则
(A) (B) (C) (D)
2.设复数 若 为实数,则
(A) (B) (C) (D)
3.“ ”是“直线 与圆 相切”的
(A)充分不必要条件 (B)必要不充分条件
(C)充分必要条件 (D)既不充分又不必要条件
4. 的展开式中,含 的正整数次幂的项共有
(A)4项 (B)3项 (C)2项 (D)1项
5.设函数 ,则 为
(A)周期函数,最小正周期为 (B)周期函数,最小正周期为
(C)周期函数,最小正周期为 (D)非周期函数
6.已知向量 ,若 ,则 与 的夹角为
(A) (B) (C) (D)
7.已知函数 的图象如右图所示
(其中 是函数 的导函数).下
面四个图象中 的图象大致是
8.若 ,则
(A) (B) (C) (D)
9.矩形ABCD中, ,沿AC将矩形ABCD折成一个直二面角 ,则四面体ABCD的外接球的体积为
(A) (B) (C) (D)
10.已知实数 满足等式 ,下列五个关系式
① ② ③ ④ ⑤
其中不可能成立的关系式有
(A)1个 (B)2个 (C)3个 (D)4个
11.在 中,O为坐标原点, ,则当 的面积达到最大值时,
(A) (B) (C) (D)
12.将 这 个数平均分成三组,则每组的三个数都成等差数列的概率为
(A) (B) (C) (D)
二.填空题:本大题共的小题,每小题4分,共16分.请把答案填在答题卡上.
13.若函数 是奇函数,则
14.设实数 满足 ,则 的最大值是_____
15.如图,在直三棱柱 中,
分别为 的中点,沿棱柱的表面从
E到F两点的最短路径的长度为______
16.以下四个关于圆锥曲线的命题中
①设A、B为两个定点, 为非零常数,若 ,则点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若 ,则动点P的轨迹为椭圆;
③方程 的两根可分别作为椭圆和双曲线的离心率;
④双曲线 与椭圆 有相同的焦点.
其中真命题的序号为________(写出所有真命题的序号).
三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)
已知函数 为常数),且方程 有两个实根为
(1)求函数 的解析式;
(2)设 ,解关于 的不等式:
18.(本小题满分12分)
已知向量 ,令
是否存在实数 ,使 (其中 是 的导函数)?若存在,则求
出 的值;若不存在,则证明之.
19.(本小题满分12分)
A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢
得B一张卡片,否则B赢得A一张卡片.规定掷硬币的次数达到9次时,或在此前某人已赢
得所有卡片时游戏终止.设 表示游戏终止时掷硬币的次数.
(1)求 的取值范围;
(2)求 的数学期望
20.(本小题满分12分)
如图,在长方体 中, ,点E在棱AB上移动.
(1)证明: ;
(2)当EAB的中点时,求点E到面 的距离;
(3)AE等于何值时,二面角 的大小为 .
21.(本小题满分12分)
已知数列 的各项都是正数,且满足:
(1)证明
(2)求数列 的通项公式
22.(本小题满分14分)
如图,设抛物线 的焦点为F,动点P
在直线 上运动,过P作抛物线
C的两条切线PA、PB,且与抛物线C分别相切
于A、B两点
(1)求 的重心G的轨迹方程;
(2)证明
2005年普通高等学校招生全国统一考试(江西卷)
理科数学参考答案
一、选择题
1.D 2.A 3.A 4.B 5.B 6.C 7.C 8.C 9.C 10.B 11.D 12.A
二、填空题
13. 14. 15. 16.③④
三、解答题
17.解:(1)将 得
(2)不等式即为
即
①当
②当
③ .
18.解:
19.解:(1)设正面出现的次数为m,反面出现的次数为n,则 ,可得:
(2)
20.解法(一)
(1)证明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E
(2)设点E到面ACD1的距离为h,在△ACD1中,AC=CD1= ,AD1= ,
故
(3)过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,
∴∠DHD1为二面角D1—EC—D的平面角.
设AE=x,则BE=2-x
解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)
(1)
(2)因为E为AB的中点,则E(1,1,0),从而 ,
,设平面ACD1的法向量为 ,则
也即 ,得 ,从而 ,所以点E到平面AD1C的距离为
(3)设平面D1EC的法向量 ,∴
由 令b=1, ∴c=2,a=2-x,
∴
依题意
∴ (不合,舍去), .
∴AE= 时,二面角D1—EC—D的大小为 .
21.解:(1)方法一 用数学归纳法证明:
1°当n=1时,
∴ ,命题正确.
2°假设n=k时有
则
而
又
∴ 时命题正确.
由1°、2°知,对一切n∈N时有
方法二:用数学归纳法证明:
1°当n=1时, ∴ ;
2°假设n=k时有 成立,
令 , 在[0,2]上单调递增,所以由假设
有: 即
也即当n=k+1时 成立,所以对一切
(2)下面来求数列的通项: 所以
,
又bn=-1,所以
22.解:(1)设切点A、B坐标分别为 ,
∴切线AP的方程为:
切线BP的方程为:
解得P点的坐标为:
所以△APB的重心G的坐标为 ,
所以 ,由点P在直线l上运动,从而得到重心G的轨迹方程为:
(2)方法1:因为
由于P点在抛物线外,则
∴
同理有
∴∠AFP=∠PFB.
方法2:①当 所以P点坐标为 ,则P点到直线AF的距离为:
即
所以P点到直线BF的距离为:
所以d1=d2,即得∠AFP=∠PFB.
②当 时,直线AF的方程:
直线BF的方程:
所以P点到直线AF的距离为:
,同理可得到P点到直线BF的距离 ,因此由d1=d2,可得到∠AFP=∠PFB.
2023高考数学答案什么时候出来
2014?福建)复数z=(3-2i)i的共轭复数
.z
等于( )
A.-2-3iB.-2+3iC.2-3iD.2+3i
考点:复数代数形式的乘除运算.
专题:数系的扩充和复数.
分析:直接由复数代数形式的乘法运算化简z,则其共轭可求.
解答:解:∵z=(3-2i)i=2+3i,
∴.z=2?3i.
故选:C.
点评:本题考查了复数代数形式的乘法运算,考查了复数的基本概念,是基础题.(2014?福建)某空间几何体的正视图是三角形,则该几何体不可能是( )A.圆柱B.圆锥C.四面体D.三棱柱考点:由三视图还原实物图.专题:计算题;空间位置关系与距离.分析:直接从几何体的三视图:正视图和侧视图或俯视图判断几何体的形状,即可.解答:解:圆柱的正视图为矩形,
故选:A点评:本题考查简单几何体的三视图,考查逻辑推理能力和空间想象力,是基础题.
想知道2011年数学高考试题和答案(浙江卷)
2023高考数学答案一般会在考后一周内公布。
一般情况下,高考答案一般会在考后一周内公布。高考结束后,非官方机构会及时公布各科目的高考答案,但不一定准确。而准确的官方高考答案要晚几天才会公布。
数学试卷做题技巧:
1、审题要慢、做题要快
审题非常关键,不管是简单题还是难题,都需要对题目要求有非常透彻的了解。并且,因为前三道大题是中低档的题目,所以应该尽快的准确完成,以拿出更多的时间来给后面的难题。因为只有前面有了保障,攻克后面高档题的时候才会有更多的信心,也才会更加放得开。
2、灵活处理、有所取舍
数学题需要一步一步的进行推导,在某一个环节当中出现意外很正常,在这个时候,不能死钻牛角尖,而是要灵活处理。比如,可以先从中间的问题做起,进一步开拓思路;将上一个问题的结论作为下一个问题的条件。
2023全国各省市高考考试用卷:
1、高考全国甲卷:(3+文科综合/理科综合)
使用省份:云南、四川、广西、贵州、西藏。
高考试卷科目:语文、数学、外语、文综、理综。
2、高考全国乙卷:(3+文科综合/理科综合)
使用省份:山西、安徽、吉林、黑龙江、内蒙古、陕西、甘肃、青海、宁夏、新疆、江西、河南。
高考试卷科目:语文、数学、外语、文综、理综。
3、新高考全国Ⅰ卷:(3+1+2/3+3)
使用省份:山东、广东、湖南、湖北、河北、江苏、福建、浙江。
高考试卷科目:语文、数学、外语、物理、化学、生物、政治、历史、地理、信息技术等。
4、新高考全国Ⅱ卷:(3+1+2/3+3)
使用省份:辽宁、重庆、海南。
高考试卷科目:语文、数学、外语、物理、化学、生物、政治、历史、地理等。
5、自主命题卷:(3+3)
使用省份:天津、上海、北京。
高考试卷科目:语文、数学、外语、物理、化学、生物、政治、历史、地理等。
以上数据出自于高三网。
高中数学2007年到2009年湖北理科数学高考试卷及解析
2011年普通高等学校招生全国统一考试(浙江卷)
理科数学
一、选择题
(1)设函数
,则实数
=
(A)-4或-2
(B)-4或2
(C)-2或4
(D)-2或2
(2)把复数
的共轭复数记作
,i为虚数单位,若
(A)3-i
(B)3+i
(C)1+3i
(D)3
(3)若某集合体的三视图如图所示,则这个集合体的直观图可以是
(4)下列命题中错误的是
(A)如果平面
,那么平面
内一定存在直线平行于平面
(B)如果平面
不垂直于平面
,那么平面
内一定不存在直线垂直于平面
(C)如果平面
,平面
,那么
(D)如果平面
,那么平面
内所有直线都垂直于平面
(5)设实数
满足不等式组
若
为整数,则
的最小值是
(A)14
(B)16
(C)17
(D)19
(6)若
,则
(A)
(B)
(C)
(D)
(7)若
为实数,则“
”是
的
(A)充分而不必要条件
(B)必要而不充分条件
(C)充分必要条件
(D)既不充分也不必要条件
(8)已知椭圆
与双曲线
有公共的焦点,
的一条渐近线与以
的长轴为直径的圆相交于
两点,
若
恰好将线段
三等分,则
(A)
(B)
(C)
(D)
(9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率
(A)
(B)
(C)
D
(10)设a,b,c为实数,f(x)
=(x+a)
.记集合S=
若
分别为集合元素S,T的元素个数,则下列结论不可能的是
(A)
=1且
=0
(B)
(C)
=2且
=2
(D)
=2且
=3
非选择题部分
(共100分)
二、填空题:本大题共7小题,每小题4分,共28分
(11)若函数
为偶函数,则实数
=
(12)若某程序图如图所
示,则该程序运行后输出的k的值是
(13)设二项式(x-
)n(a>0)的展开式中X的系数为A,常数项为B,
若B=4A,则a的值是
(14)若平面向量α,β满足|α|≤1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为
,则α与β的夹角
的取值范围是
(15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公
司投递了个人简历,假定该毕业生得到甲公司面试的概率为
,得到乙公司面试的概率为
,且三个公司是否让其面试是相互独立的。记X为该毕业生得到面试得公司个数。若
,则随机变量X的数学期望
(16)设
为实数,若
则
的最大值是
.。
(17)设
分别为椭圆
的焦点,点
在椭圆上,若
;则点
的坐标是
.
三、解答题;本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。
(18)(本题满分14分)在
中,角
所对的边分别为a,b,c.
已知
且
.
(Ⅰ)当
时,求
的值;
(Ⅱ)若角
为锐角,求p的取值范围;
(19)(本题满分14分)已知公差不为0的等差数列
的首项
为a(
),设数列的前n项和为
,且
成等比数列
(1)求数列
的通项公式及
(2)记
,当
时,试比较
与
的大小.
(20)(本题满分15分)如图,在三棱锥
中,
,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2
(Ⅰ)证明:AP⊥BC;
(Ⅱ)在线段AP上是否存在点M,使得二面角A-MC-β为直二面
角?若存在,求出AM的长;若不存在,请说明理由。
(21)(本题满分15分)已知抛物线
:
=
,圆
:
的圆心为点M
(Ⅰ)求点M到抛物线
的准
线的距离;
(Ⅱ)已知点P是抛物线
上一点(异于原点),过点P作圆
的两条切线,交抛物线
于A,B两点,若过M,P两点的直线
垂直于
AB,求直线
的方程
(22)(本题满分14分)
设函数
(I)若
的极值点,求实数
(II)求实数
的取值范围,使得对任意的
,恒有
成立,注:
为自然对数的底数。
2007年普通高等学校招生全国统一考试(湖北卷)
数 学(理工农医类)
本试卷共4页,满分150分,考试时间120分钟。
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2.选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。
3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个答案中,只有一项是符合题目要求的
1.如果 的展开式中含有非零常数项,则正整数n的最小值为
A.3
B.5
C.6
D.10
2.将的图象按向量a=平移,则平移后所得图象的解析式为
A.
B.
C.
D.
3.设P和Q是两个集合,定义集合P-Q=,如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q等于
A.{x|0<x<1}
B.{x|0<x≤1}
C.{x|1≤x<2}
D.{x|2≤x<3}
4.平面α外有两条直线m和n,如果m和n在平面α内的射影分别是m'和n',给出下列四个命题:
①m'⊥n'm⊥n
②m⊥n m'⊥n'
③m'与n'相交m与n相交或重合
④m'与n'平行m与n平行或重合
其中不正确的命题个数是
A.1
B.2
C.3
D.4
5.已知p和q是两个不相等的正整数,且q≥2,则
A.0
B.1
C.
D.
6.若数列{an}满足N*),则称{an}为“等方比数列”
甲:数列{an}是等方比数列;乙:数列{an}是等比数列.则
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
7.双曲线C1:(a>0,b>0)的左准线为l,左焦点和右焦点分别为F1和F2;抛物线C2的准线为l,焦点为F2;C1与C2的一个交点为M,则等于
A.-1
B.1
C.
D.
8.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且,则使得为整数的正整数n的个数是
A.2
B.3
C.4
D.5
9.连掷两次骰子得到的点数分别为m和n,记向量a=(m,n)与向量b=(1,-1)的夹角为θ,则的概率是
A.
B.
C.
D.
10.已知直线(a,b是非零常数)与圆x2+y2=100有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有
A.60条
B.66条
C.72条
D.78条
二、填空题:本大题共5小题,每小题5分,共25分。
11.已知函数y=2x-a 的反函数是y=bx+3,则 a= ;b= 。
12.复数z=a+bi,a,b∈R,且b≠0,若z2-4bz是实数,则有序实数对(a,b)可以是 。(写出一个有序实数对即可)
13.设变量x,y满足约束条件则目标函数2x+y的最小值为 。
14.某篮球运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率 。(用数值作答)
15.为了预防流感,某学校对教室用药熏消毒法进行消毒。已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题:
(Ⅰ)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为 。
(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室。
三、解答题:本大题共5小题,共75分。解答应写出文字说明,证明过程或演算步骤。
16.(本小题满分12分)
已知△ABC的面积为3,且满足0≤≤6,设和的夹角为θ。
(Ⅰ)求θ的取值范围;
(Ⅱ)求函数f(θ)=2sin2的最大值与最小值。
17.(本小题满分12分)
分 组
频 数
4
25
30
29
10
2
合 计
100
在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)
共有100个数据,将数据分组如右表:
(Ⅰ)在答题卡上完成频率分布表,并在给定的坐标系中画出
频率分布直方图;
(Ⅱ)估计纤度落在中的概率及纤度小于1.40的概
率是多少;
(Ⅲ)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是1.32)作为代表。据此,估计纤度的期望。
18.(本小题满分12分)
如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ。
(Ⅰ)求证:平面VAB⊥平面VCD;
(Ⅱ)当角θ变化时,求直线BC与平面VAB所成的角的取值范围。
19.(本小题满分12分)
在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点。
(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值;
(Ⅱ)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由。(此题不要求在答题卡上画图)
20.(本小题满分13分)
已知定义在正实数集上的函数f(x)=x2+2ax,g(x)=3a2lnx+b,其中a>0。设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同。
(Ⅰ)用a表示b,并求b的最大值;
(Ⅱ)求证:f(x) ≥g(x) (x>0)。
21.(本小题满分14分)
已知m,n为正整数。
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(Ⅱ)对于n≥6,已知,求证,m=1,2…,n;
(Ⅲ)求出满足等式3n+4m+…+(n+2)m=(n+3)n的所有正整数n。
2007年普通高等学校招生全国统一考试(湖北卷)
数 学(理工农医类)
参考答案
一、选择题:本题考查基础知识和基本运算。每小题5分,满分50分。
1.B2.A3.B4.D5.C6.B7.A8.D9.C10.A
二、填空题:本题考查基础知识和基本运算。每小题5分,满分25分。
11.6;
12.(2,1)(或满足a=2b的任一组非零实数对(a,b))
13.—
14.
15.;0.6
三、解答题:本大题共6小题,共75分。
16.本小题主要考查平面向量数量积的计算,解三角形、三角公式、三角函数的性质等基本知识,考查推理和运算能力。
解:
(Ⅰ)设△ABC中角A,B,C的对边分别为a,b,c,
则由.
(Ⅱ)
=
=
=.
.
即当.
17.本小题主要考查频率分布直方图、概率、期望等概念和用样本频率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力
分 组
频 数
频 率
4
0.04
25
0.25
30
0.30
29
0.29
10
0.10
2
0.02
合 计
100
1.00
(Ⅱ)纤度落在中的概率约为0.30+0.29+0.10=0.69,纤度小于1.40的概率约为0.04+0.25+×0.30=0.44.
(Ⅲ)总体数据的期望约为
1.32×0.04+1.36×0.25+1.40×0.30+1.44×0.29+1.48×0.10+1.52×0.02=1.4088.
18.本小题主要考查线面关系、直线与平面成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力.
解法1:
(Ⅰ)是等腰三角形,又D是AB的中点,
又
(Ⅱ)过点C在平面VD内作CH⊥VD于H,则由(Ⅰ)知CH⊥平面VAB.连接BH,于是∠CBH就是直线BC与平面VAB所成的角
在Rt△CHD中,设,
即直线BC与平面VAB所成角的取值范围为(0,).
解法2:
(Ⅰ)以CA、CB、CV所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则C(0,0,0),A(a,0,0),B(0,a,0),D(),
从而
同理
=-
即
又
(Ⅱ)设直线BC与平面VAB所成的角为φ,平面VAB的一个法向量为n=(x,y,z),
则由n·
19.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.
解法1:
(Ⅰ)依题意,点N的坐标为N(0,-p),可设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+p,与x2=2py联立得消去y得x2-2pkx-2p2=0.
由韦达定理得x1+x2=2pk,x1x2=-2p2.
于是
=
=
.
(Ⅱ)假设满足条件的直线l存在,其方程为y=a,AC的中点为径的圆相交于点P、Q,PQ的中点为H,则
=.
=
=
=
令,得为定值,故满足条件的直线l存在,其方程为,
即抛物线的通径所在的直线.
解法2:
(Ⅰ)前同解法1,再由弦长公式得
=
又由点到直线的距离公式得.
从而,
(Ⅱ)假设满足条件的直线t存在,其方程为y=a,则以AC为直径的圆的方程为
将直线方程y=a代入得
设直线l与以AC为直径的圆的交点为P(x2,y2),Q(x4,y4),则有
令为定值,故满足条件的直线l存在,其方程为.
即抛物线的通径所在的直线。
20.本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力
解:
(Ⅰ)设y=f(x)与y=g(x)(x>0)在公共点(x0,y0)处的切线相同,
.
即
即有
令于是
当
当
故为减函数,
于是h(t)在
(Ⅱ)设
则
故F(x)在(0,a)为减函数,在(a,+)为增函数,
于是函数
故当x>0时,有
21.本小题主要考查数学归纳法、数列求和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力.
解法1:
(Ⅰ)证:用数学归纳法证明:
(i)当m=1时,原不等式成立;当m=2时,左边=1+2x+x2,右边=1+2x,因为x2≥0,
所以左边≥右边,原不等式成立;
(ii)假设当m=k时,不等式成立,即(1+x)k≥1+kx,则当m=k+1时,
两边同乘以1+x得
所以时,不等式也成立。
综合(i)(ii)知,对一切正整数m,不等式都成立.
(Ⅱ)证:当n≥6,m≤n时,由(Ⅰ)得
于是
(Ⅲ)解:由(Ⅱ)知,当n≥6时,
故只需要讨论n=1,2,3,4,5的情形;
当n=1时,3≠4,等式不成立;
当n=2时,32+42=52,等式成立;
当n=3时,33+43+53=63,等式成立;
当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;
当n=5时,同n=4的情形可分析出,等式不成立.
综上,所求的n只有n=2,3
解法2:
(Ⅰ)证:当x=0或m=1时,原不等式中等号显然成立,下用数学归纳法证明:
当x>-1,且x≠0时,m≥2,(1+x)m>1+mx. 1
(i)当m=2时,左边=1+2x+x2,右边=1+2x,因为x≠0,所以x2>0,即左边>右边,不等式①成立;
(ii)假设当m=k(k≥2)时,不等式①成立,即(1+x)k>1+kx,则当m=k+1时,因为x>-1,所以1+x>0.又因为x≠0,k≥2,所以kx2>0.
于是在不等式(1+x)k>1+kx两边同乘以1+x得
(1+x)k·(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,
所以(1+x)k+1>1+(k+1)x,即当m=k+1时,不等式①也成立
综上所述,所证不等式成立
(Ⅱ)证:当
而由(Ⅰ),
(Ⅲ)解:假设存在正整数成立,
即有()+=1②
又由(Ⅱ)可得
()+
+与②式矛盾,
故当n≥6时,不存在满足该等式的正整数n。
故只需要讨论n=1,2,3,4,5的情形;
当n=1时,3≠4,等式不成立;
当n=2时,32+42=52,等式成立;
当n=3时,33+43+53=63,等式成立;
当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;
当n=5时,同n=4的情形可分析出,等式不成立
综上,所求的n只有n=2,3
2007年普通高等学校招生全国统一考试(湖北卷)
数 学(理工农医类)
本试卷共4页,满分150分,考试时间120分钟。
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2.选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。
3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个答案中,只有一项是符合题目要求的
1.如果 的展开式中含有非零常数项,则正整数n的最小值为
A.3
B.5
C.6
D.10
2.将的图象按向量a=平移,则平移后所得图象的解析式为
A.
B.
C.
D.
3.设P和Q是两个集合,定义集合P-Q=,如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q等于
A.{x|0<x<1}
B.{x|0<x≤1}
C.{x|1≤x<2}
D.{x|2≤x<3}
4.平面α外有两条直线m和n,如果m和n在平面α内的射影分别是m'和n',给出下列四个命题:
①m'⊥n'm⊥n
②m⊥n m'⊥n'
③m'与n'相交m与n相交或重合
④m'与n'平行m与n平行或重合
其中不正确的命题个数是
A.1
B.2
C.3
D.4
5.已知p和q是两个不相等的正整数,且q≥2,则
A.0
B.1
C.
D.
6.若数列{an}满足N*),则称{an}为“等方比数列”
甲:数列{an}是等方比数列;乙:数列{an}是等比数列.则
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
7.双曲线C1:(a>0,b>0)的左准线为l,左焦点和右焦点分别为F1和F2;抛物线C2的准线为l,焦点为F2;C1与C2的一个交点为M,则等于
A.-1
B.1
C.
D.
8.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且,则使得为整数的正整数n的个数是
A.2
B.3
C.4
D.5
9.连掷两次骰子得到的点数分别为m和n,记向量a=(m,n)与向量b=(1,-1)的夹角为θ,则的概率是
A.
B.
C.
D.
10.已知直线(a,b是非零常数)与圆x2+y2=100有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有
A.60条
B.66条
C.72条
D.78条
二、填空题:本大题共5小题,每小题5分,共25分。
11.已知函数y=2x-a 的反函数是y=bx+3,则 a= ;b= 。
12.复数z=a+bi,a,b∈R,且b≠0,若z2-4bz是实数,则有序实数对(a,b)可以是 。(写出一个有序实数对即可)
13.设变量x,y满足约束条件则目标函数2x+y的最小值为 。
14.某篮球运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率 。(用数值作答)
15.为了预防流感,某学校对教室用药熏消毒法进行消毒。已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题:
(Ⅰ)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为 。
(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室。
三、解答题:本大题共5小题,共75分。解答应写出文字说明,证明过程或演算步骤。
16.(本小题满分12分)
已知△ABC的面积为3,且满足0≤≤6,设和的夹角为θ。
(Ⅰ)求θ的取值范围;
(Ⅱ)求函数f(θ)=2sin2的最大值与最小值。
17.(本小题满分12分)
分 组
频 数
4
25
30
29
10
2
合 计
100
在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)
共有100个数据,将数据分组如右表:
(Ⅰ)在答题卡上完成频率分布表,并在给定的坐标系中画出
频率分布直方图;
(Ⅱ)估计纤度落在中的概率及纤度小于1.40的概
率是多少;
(Ⅲ)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是1.32)作为代表。据此,估计纤度的期望。
18.(本小题满分12分)
如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ。
(Ⅰ)求证:平面VAB⊥平面VCD;
(Ⅱ)当角θ变化时,求直线BC与平面VAB所成的角的取值范围。
19.(本小题满分12分)
在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点。
(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值;
(Ⅱ)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由。(此题不要求在答题卡上画图)
20.(本小题满分13分)
已知定义在正实数集上的函数f(x)=x2+2ax,g(x)=3a2lnx+b,其中a>0。设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同。
(Ⅰ)用a表示b,并求b的最大值;
(Ⅱ)求证:f(x) ≥g(x) (x>0)。
21.(本小题满分14分)
已知m,n为正整数。
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(Ⅱ)对于n≥6,已知,求证,m=1,2…,n;
(Ⅲ)求出满足等式3n+4m+…+(n+2)m=(n+3)n的所有正整数n。
字数太多,复制不上去,想要的话,我给你发