您现在的位置是: 首页 > 教育政策 教育政策
2017数学文科山东高考_2017年山东卷文科数学
tamoadmin 2024-06-09 人已围观
简介1.山东省新高考从哪一年开始2.山东是不是新高考3.山东高考文科数学的答案4.高考文科数学知识点总结归纳5.山东数学高考是什么卷6.山东数学考全国卷几山东新高考考几天介绍如下:2023山东高考时间是6月7日-10日。考试时间为四天时间。山东高考语文、数学、外语安排在在6月7日到6月8日之间。思想政治、历史、地理、物理、化学、生物等6个科目中选报3科参加考试,考试时间安排在6月9日—10日。国家统一
1.山东省新高考从哪一年开始
2.山东是不是新高考
3.山东高考文科数学的答案
4.高考文科数学知识点总结归纳
5.山东数学高考是什么卷
6.山东数学考全国卷几
山东新高考考几天介绍如下:
2023山东高考时间是6月7日-10日。考试时间为四天时间。山东高考语文、数学、外语安排在在6月7日到6月8日之间。思想政治、历史、地理、物理、化学、生物等6个科目中选报3科参加考试,考试时间安排在6月9日—10日。
国家统一高考时间安排表
6月7日语文(9:00-11:30)数学(15:00-17:00)
6月8日外语(笔试)(15:00-16:40)
山东普通高中学业水平等级考试
普通高中学业水平等级考试由山东省自主命题,考生从思想政治、历史、地理、物理、化学、生物等6个科目中选报3科参加考试。考试时间安排在6月9日—10日,每科考试时间为90分钟。
6月9日 上午:8:00-9:30物理 11:00-12:30思想政治 下午:15:30-17:00 化学
6月10日 上午:8:00-9:30历史 11:00-12:30生物 下午:15:30-17:00 地理
山东高考总成绩构成及科目
山东高校招生录取总成绩由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总成绩为750分,3科统一高考科目原始分数满分均为150分;考生自主选择的3科等级考试科目原始分数满分均为100分,转换为等级分计入总成绩,各科等级分满分均为100分。
山东省夏季高考实行“3+3”考试模式,包括国家统一高考语文、数学、外语(含笔试和听力)等3科,以及考生从普通高中学业水平等级考试思想政治、历史、地理、物理、化学、生物等6科中选报的3科。国家统一高考外语分英语、俄语、日语、法语、德语、西班牙语等6个语种,由考生任选其中一个语种参加考试。
山东省新高考从哪一年开始
山东2017年高考,英语使用的是全国卷,其他科目不是全国卷。因为山东是2018年才加入全科使用全国卷的,在这之前,2015年山东的英语加入使用全国卷,2017年未作调整,2018年开始全科使用全国卷。
2007年,山东、宁夏、海南、广东加入新课标高考,其中宁夏、海南由国家考试中心命题,宁夏、海南共用语数英卷,宁夏用理综卷、文综卷,海南用理化生政史地单科卷。这一年,广东与山东自主命题新课标卷,其中广东英语卷开考“语法填空”新题型。
2015年,江西全科、山东英语、辽宁语数英回归新课标全国卷。广西最后一个进入新课标高考,采用全国Ⅱ卷。
2016年,全国绝大多数省份使用国家考试中心命题试卷。由于多数省份的加入,新课标全国卷开始分成Ⅰ 卷、Ⅱ卷和Ⅲ卷。山东、安徽、湖北、福建、湖南、山西、河北、江西、广东、河南英语及综合采用全国Ⅰ 卷。
扩展资料
《山东省深化高等学校考试招生综合改革试点方案》由山东省人民政府办公厅于2018年3月23日印发。当中规定自2020年起,夏季高考统一考试科目为语文、数学、外语(含英语、俄语、日语、法语、德语、西班牙语)3个科目,不分文理科,外语考试分两次进行。
文、数学考试于每年6月份按照国家统一高考时间进行。外语科目考试分听力和笔试两次进行,其中听力部分有2次考试机会,安排在高三上学期末进行,取最高原始分计入高考成绩;笔试部分有1次考试机会,安排在6月份国家统一高考期间进行,取原始分计入高考成绩。
考生的外语高考成绩由听力部分和笔试部分考试成绩相加组成。条件成熟时,增加口语测试并采用机考方式进行,外语科目考试适当增加听说部分成绩的比重。
参考资料:
百度百科-高考试题全国卷
百度百科-山东省深化高等学校考试招生综合改革试点方案
山东是不是新高考
山东新高考是从2017年开始实行。
山东新高考是从2017年开始实行,也就是从2017年9月高一新生入学时开始实行,2020年已经进行了首届新高考,采取3+3新高考模式,不分文理科,语文、数学、外语为统考,另外从其他科目中选择3门进行考试,总分为750分。
总体目标:
全面贯彻党的教育方针,坚持立德树人,遵循人才培养和选拔规律,按照有利于促进学生健康成长、有利于高校科学选拔人才、有利于教育教学改革、有利于维护社会公平的原则。
2017年启动高等学校考试招生综合改革试点,2020年整体实施,形成分类考试、综合评价、多元录取的高校考试招生模式,健全促进公平、科学选才、监督有力的高校考试招生体制机制。
统一考试招生的考试科目、考试内容和考试安排:
1、考试科目
自2020年起,夏季高考统一考试科目为语文、数学、外语(含英语、俄语、日语、法语、德语、西班牙语)3个科目,不分文理科,外语考试分两次进行。
2、考试内容
依据高校人才选拔要求,科学设计命题内容,增强综合性,着重考查学生独立思考和运用所学知识分析问题、解决问题的能力。改进评分方式,加强评卷管理,完善成绩报告。
3、考试安排
语文、数学考试于每年6月份按照国家统一高考时间进行。外语科目考试分听力和笔试两次进行,其中听力部分有2次考试机会,安排在高三上学期末进行,取最高原始分计入高考成绩;笔试部分有1次考试机会,安排在6月份国家统一高考期间进行,取原始分计入高考成绩。
以上数据来自大学生必备网。
山东高考文科数学的答案
2023山东是新高考。
山东新高考改革从2017年开始,2020年已经进行了首届新高考,采取3+3高考模式,不分文理科,考生可以自己选科,给了考生给多的选择,有利于更好地选拔人才。
一、考试科目
自2020年起,夏季高考统一考试科目为语文、数学、外语(含英语、俄语、日语、法语、德语、西班牙语)3个科目,不分文理科,外语考试分两次进行。
二、考试内容
依据高校人才选拔要求,科学设计命题内容,增强综合性,着重考查学生独立思考和运用所学知识分析问题、解决问题的能力。改进评分方式,加强评卷管理,完善成绩报告。
三、考试安排
1,语文、数学考试于每年6月份按照国家统一高考时间进行。外语科目考试分听力和笔试两次进行,其中听力部分有2次考试机会,安排在高三上学期末进行,取最高原始分计入高考成绩;
2,笔试部分有1次考试机会,安排在6月份国家统一高考期间进行,取原始分计入高考成绩。考生的外语高考成绩由听力部分和笔试部分考试成绩相加组成。条件成熟时,增加口语测试并采用机考方式进行,外语科目考试适当增加听说部分成绩的比重。
四、成绩构成
1,考生的高校招生录取总成绩由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分。
2,其中,统一高考科目语文、数学、外语的卷面满分分值均为150分,总分450分;考生自主选择的3门普通高中学业水平等级考试科目每科卷面满分分值均为100分,转换为等级分按满分100分计入,等级考试科目总分300分。
五、等级考试科目的等级计分规则
1,将每门等级考试科目考生的原始成绩从高到低划分为A、B+、B、C+、C、D+、D、E共8个等级。参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%。
2,等级考试科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到91-100、81-90、71-80、61-70、51-60、41-50、31-40、21-30八个分数区间,得到考生的等级成绩。
六、科目报考要求
在山东招生的高校根据自身办学定位和专业培养目标,从思想政治、历史、地理、物理、化学、生物6个科目中,提出在山东招生的分专业(类)等级考试科目要求。高校应按照有利于人才培养和专业建设的原则,提出等级考试科目报考要求,并提前2年向社会公布。
七、招生录取
夏季高考按“专业(类)+学校”方式实行平行志愿投档,增加志愿填报数量,最大限度满足考生志愿需求。招生院校依据语文、数学、外语和考生自主选考的3科普通高中学业水平等级考试科目总成绩,参考学生综合素质评价择优录取。
高考文科数学知识点总结归纳
试题与答案
数学试题(文科)
第Ⅰ卷 选择题(共50分)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)
1.已知集合 , ,则 =( A )
A. B.
C. D.
2.若复数 ( , 为虚数单位位)是纯虚数,则实数 的值为( )
A.6 B.-2 C.4 D.-6
3.已知 ,则“ ”是“ ”的 ( B )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
4.已知点P(x,y)在不等式组 表示的平面区域上运动,
则z=x-y的取值范围是( )
A.[-2,-1] B.[-1,2] C.[-2,1] D.[1,2]
5.双曲线 的离心率为2,有一个焦点与抛物线 的焦点重合,则mn的值为( )
A. B. C. D.
一年级 二年级 三年级
女生 373
男生 377 370
6.某校共有学生2000名,各年级男、女生人数如表所示.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的
学生人数为( )
A.24 B.18 C.16 D.12
7.平面向量 =( )
A.1 B.2 C.3 D.
8.在等差数列 中,已知 ,那么 的值为( )
A.-30 B.15 C.-60 D.-15
9.设 、 为两个不同的平面,l、m为两条不同的直线,且l ,m ,有如下的两个命题:①若 ‖ ,则l‖m;②若l⊥m,则 ⊥ .那么( )
A.①是真命题,②是假命题 B.①是假命题,②是真命题
C.①②都是真命题 D.①②都是假命题
10.已知一个几何体的三视图如所示,则该几何体的体积为( )
A.6 B.5.5
C.5 D.4.5
第Ⅱ卷 非选择题(共100分)
二、填空题:本大题共7小题,考生作答5小题,每小题5分,满分25分.
(一)必做题(11~14题)
11.已知 ,且 是第二象限的角,
则 ___________.
12.执行右边的程序框图,若 =12, 则输
出的 = ;
13.函数 若
则 的值为: ;
14.圆 上的点到直线 的最大距离与最小距离之差是: _____________.
(二)选做题(15~17题,考生只能从中选做一题)
15.(选修4—4坐标系与参数方程)曲线 与曲线 的位置关系是: (填“相交”、 “相切”或“相离”) ;
16.(选修4—5 不等式选讲)不等式 的解集是: ;
17.(选修4—1 几何证明选讲)已知 是圆 的切线,切点为 , . 是圆 的直径, 与圆 交于点 , ,则圆 的半径 .
三、解答题:解答应写出文字说明,证明过程或演算步骤(本答题共6小题,共75分)
18.(本小题12分)
已知向量 , ,设 .
(1).求 的值;
(2).当 时,求函数 的值域。
19.(本小题12分)
已知函数 .
(1)若 从集合 中任取一个元素, 从集合 中任取一个元素,
求方程 有两个不相等实根的概率;
(2)若 从区间 中任取一个数, 从区间 中任取一个数,求方程 没有实根的概率.
20.(本小题12分)
在平面直角坐标系xoy中,已知四点 A(2,0), B(-2,0), C(0,-2),D(-2,-2),把坐标系平面沿y轴折为直二面角.
(1)求证:BC⊥AD;
(2)求三棱锥C—AOD的体积.
21.(本小题12分)
已知数列 的前n项和为 , 且满足 ,
(1) 求 的值;
(2) 求证:数列 是等比数列;
(3) 若 , 求数列 的前n项和 .
22、(本小题13分)
已知函数 在点 处的切线方程为 .
(1)求 的值;
(2)求函数 的单调区间;
(3)求函数 的值域.
23.(本小题14分)已知椭圆 两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足 =1,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)求直线AB的斜率;
(3)求△PAB面积的最大值.
文科数学参考答案与评分标准
一、选择题:
A卷选择题答案
题号 1 2 3 4 5 6 7 8 9 10
答案 A D A B D C B A D C
B卷选择题答案
题号 1 2 3 4 5 6 7 8 9 10
答案
二、填空题:
(一)必做题
11. ; 12.4.; 13.1或 ; 14. .
(二)选做题
15.相交;16. ;17. .
三、解答题:
18.解: =
=
= ……………………………………(4分)
(1)
= …………………………(8分)
(2)当 时, ,
∴ ………………………(12分)
19.解:(1)a取集合{0,1,2,3}中任一元素,b取集合{0,1,2}中任一元素
∴a、b的取值情况有(0,0),(0,1)(0,2)(1,0)(1,1)(1,2)(2,0),
(2,1),(2,2),(3,0)(3,1)(3,2)其中第一个数表示a的取值,第二个数表示b的取值,基本事件总数为12.
设“方程 有两个不相等的实根”为事件A,
当 时方程 有两个不相等实根的充要条件为
当 时, 的取值有(1,0)(2,0)(2,1)(3,0)(3,1)(3,2)
即A包含的基本事件数为6.
∴方程 有两个不相等的实根的概率
……………………………………………………(6分)
(2)∵a从区间〔0,2〕中任取一个数,b从区间〔0,3〕中任取一个数
则试验的全部结果构成区域
这是一个矩形区域,其面积
设“方程 没有实根”为事件B
则事件B构成的区域为
即图中阴影部分的梯形,其面积
由几何概型的概率计算公式可得方程 没有实根的概率
………………………………………………(12分)
20.解法一:(1)∵BOCD为正方形,
∴BC⊥OD, ∠AOB为二面角B-CO-A的平面角
∴AO⊥BO ∵AO⊥CO 且BO∩CO=O
∴AO⊥平面BCO 又∵
∴AO⊥BC 且DO∩AO=O ∴BC⊥平面ADO
∴BC⊥AD …………(6分)
(2) …………………………(12分)
21.解:(1)因为 ,令 , 解得 ……1分
再分别令 ,解得 ……………………………3分
(2)因为 ,
所以 ,
两个代数式相减得到 ……………………………5分
所以 ,
又因为 ,所以 构成首项为2, 公比为2的等比数列…7分
(3)因为 构成首项为2, 公比为2的等比数列
所以 ,所以 ……………………………8分
因为 ,所以
所以
令
因此 ……………………………11分
所以 ………………………12分
22.解:(1)
∵ 在点 处的切线方程为 .
∴ …………………………(5)
(2)由(1)知: ,
x
2
+ 0 — 0 +
极大
极小
∴ 的单调递增区间是: 和
的单调递减区间是: ………………………………(9)
(3)由(2)知:当x= -1时, 取最小值
当x= 2时, 取最大值
且当 时, ;又当x<0时, ,
所以 的值域为 ………………………………………(13)
23.解:(1) , ,设
则 ,
又 , ,∴ ,即所求 ……(5分)
(2)设 : 联立
得:
∵ ,∴ ,
则
同理 , ∴ ……(10分)
(3)设 : ,联立
,得: ,∴
∴|AB|=
而
∴S=
当且仅当m=±2时等号成立。…………………………………(14分)
山东数学高考是什么卷
对于文科生来说,数学是一门比较特别的学科,高考要想数学分数高,必须掌握必考知识点。下面是我为大家整理的高考文科数学知识点,希望对大家有所帮助。
高考文科数学知识点
第一,函数与导数
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析
主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
第七,解析几何
高考的难点,运算量大,一般含参数。
文科数学高频必考考点
第一部分:选择与填空
1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);
2.常用逻辑用语(充要条件,全称量词与存在量词的判定);
3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);
4.幂、指、对函数式运算及图像和性质
5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);
6.空间体的三视图及其还原图的表面积和体积;
7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;
8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;
9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);
10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;
11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;
12.向量数量积、坐标运算、向量的几何意义的应用;
13.正余弦定理应用及解三角形;
14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;
15.线性规划的应用;会求目标函数;
16.圆锥曲线的性质应用(特别是会求离心率);
17.导数的几何意义及运算、定积分简单求法
18.复数的概念、四则运算及几何意义;
19.抽象函数的识别与应用;
第二部分:解答题
第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;
第18题:(文)概率与统计(概率与统计相结合型)
(理)离散型随机变量的概率分布列及其数字特征;
第19题:立体几何
①证线面平行垂直;面与面平行垂直
②求空间中角(理科特别是二面角的求法)
③求距离(理科:动态性)空间体体积;
第20题:解析几何(注重思维能力与技巧,减少计算量)
①求曲线轨迹方程(用定义或待定系数法)
②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)
③求定点、定值、最值,求参数取值的问题;
第21题:函数与导数的综合应用
这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。
主要考查:分类讨论思想;化归、转化、迁移思想;整体代换、分与合思想
一般设计三问:
①求待定系数,利用求导讨论确定函数的单调性;
②求参变数取值或函数的最值;
③探究性问题或证不等式恒成立问题。
第22题:三选一:
(1)几何证明主要考查三角形相似,圆的切割线定理,证明成比例,求角度,求长度;利用射影定理解决圆中计算和证明问题是历年高考题的 热点 ;
(2)坐标系与参数方程,主要抓两点:参数方程、极坐标方程互化为普通方程;有参数、极坐标方程求解曲线的基本量。这类题,思路清晰,难度不大,抓基础,不做难题。
(3)不等式选讲:绝对值不等式与函数结合型。设计上为:①解含有参变数关于x的不等式;②求解不等式恒成立时参变数的取值;③证明不等式(利用均值定理、放缩法等)。
2018高考文科数学知识点:高中数学知识点 总结
必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题
3、圆方程:
必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
高考文科数学知识点总结
乘法与因式分解
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
根与系数的关系
X1+X2=-b/aX1__X2=c/a注:韦达定理
判别式
b2-4a=0注:方程有相等的两实根
b2-4ac>0注:方程有一个实根
b2-4ac<0注:方程有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积公式
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB
-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和公式
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理:a/sinA=b/sinB=c/sinC=2R
注:其中R表示三角形的外接圆半径
余弦定理:b2=a2+c2-2accosB
注:角B是边a和边c的夹角
高考文科数学知识点总结相关 文章 :
★ 2022北京卷高考文科数学试题及答案解析
★ 2022全国新高考Ⅰ卷文科数学试题及答案解析
★ 2022年全国新高考1卷数学试题及答案解析
★ 2022全国新高考Ⅱ卷文科数学试题及答案解析
★ 高中导数知识点总结大全
★ 山东2022高考文科数学试题及答案解析
★ 湖北2022高考文科数学试题及答案解析
★ 2022河北高考文科数学试题及答案解析
★ 高中文科数学复习指导与注意事项
★ 2017高考数学三角函数知识点总结
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();山东数学考全国卷几
山东数学高考是新高考I卷。
其试卷的组成科目有由语文、数学外语3门全国统考科目成绩和物理、化学、生物、思想政治、历史、地理的任选3门选择性考试科目成绩构成。满分为750分。山东高考语文、数学、外语用的是新高考全国卷Ⅰ,其他科目为本省自命题。
2023山东高考试题难度:
1、山东高考试题难度大、题型灵活多变,在考查学生基础知识的同时,又考查学生对知识的应用能力,而且,采用新高考一卷的省份都是高考竞争比较激烈的省份。
2、从报考人数上看。2022年今年高考山东省报名考生共86.7万人,其中春季高考21万人,夏季高考65.7万人,但从报考人数上看,就知道山东的高考竞争已经到了白热化。
3、从高考录取率上看。山东省本科录取率为35.7%,夏季本科录取率为36.9%,相比去年夏季本科录取率下降了超6%,和有些省市近50%的本科录取率比,山东的录取率还是非常低的。
2023年山东高考一本和二本分数线:
普通类:特殊类型招生控制线520分;一段线443分;二段线150分。体育类:一段线587分;二段线480分。
艺术类:文学编导类、播音主持类、摄影类本科文化控制线443分;美术类、音乐类、书法类、航空服务艺术类本科文化控制线332分;舞蹈类、影视戏剧表演类、服装表演(模特)类本科文化控制线287分;艺术类专科文化控制线150分。
2023山东高考状元:
2023山东高考状元(不分文理科)高考状元,刘雅轩,总成绩713分,来自威海文登新一中。
山东数学用的是新高考全国卷Ⅰ。
2023年新高考全国Ⅰ卷数学题难度适中。相较去年,难度稍有提高,但整体难度与预期相符,没有出现超纲难题。
山东数学高考试题类型:
2023年新高考全国Ⅰ卷数学试题设计新颖,紧扣高考大纲,试题类型多样,既有知识点的考察,也有思维能力的考核,更加贴近实际生活,符合素质教育的要求。
山东数学高考反应热度:
据了解,2023年新高考全国Ⅰ卷数学试题反应热度较高,考生普遍认为试题质量不错,难度适中,但也有一些考生反映部分试题有些细节问题,需要仔细阅读题目。
山东数学高考题目质量:
从试题的难度和类型来看,2023年新高考全国Ⅰ卷数学试题质量良好,能够全面考察学生的数学素养和思维能力。但也有一些考生反映部分试题出现了错误,需要教育部门进一步审核。
山东高考模式:
山东是第二批新高考改革省份,2017年启动,2020年首届新高考,高考采用3+3模式,不分文理科,其中第一个3为语文、数学、外语,第二个3为3门选考科目。
3+3高考模式各科目分数及总分,第一个3:语文、数学、外语3门必考科目,每门满分150分,采用原始考分,总分450分;第二个3:另外3门选考科目通常满分为100分,采用等级赋分,总分300分,所以总共满分为750分。
山东高考考试安排:
语文、数学考试于每年6月份按照国家统一高考时间进行。外语科目考试分听力和笔试两次进行,其中听力部分有2次考试机会,安排在高三上学期末进行,取最高原始分计入高考成绩;
笔试部分有1次考试机会,安排在6月份国家统一高考期间进行,取原始分计入高考成绩。山东考生的外语高考成绩由听力部分和笔试部分考试成绩相加组成。条件成熟时,增加口语测试并采用机考方式进行,外语科目考试适当增加听说部分成绩的比重。