您现在的位置是: 首页 > 教育政策 教育政策

高考数列经典例题50道大题,高考数列总结

tamoadmin 2024-06-07 人已围观

简介1.高考求数列通项公式要求掌握几种方法2.急啊!!快高考了,如何学数列?3.谁能给我 总结一下高考数学基本公式4.数列问题(高考题)越快越好,要有解答。 高中数学是一门比较占分的科目,有繁多的公式和数值,让很多的同学感到头疼。下面我为大家整理的《高中数学知识点归纳总结及高中数学公式大全(完整版)》,仅供大家参考。 1.集合与函数 内容子交并补集,还有幂指对函数。 性质奇偶

1.高考求数列通项公式要求掌握几种方法

2.急啊!!快高考了,如何学数列?

3.谁能给我 总结一下高考数学基本公式

4.数列问题(高考题)越快越好,要有解答。

高考数列经典例题50道大题,高考数列总结

高中数学是一门比较占分的科目,有繁多的公式和数值,让很多的同学感到头疼。下面我为大家整理的《高中数学知识点归纳总结及高中数学公式大全(完整版)》,仅供大家参考。

1.集合与函数

内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,

若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。分母不能等于0,

偶次方根须非负,零和负数无对数;

正切函数角不直,余切函数角不平;

其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;

图象互为轴对称,Y=X是对称轴;

求解非常有规律,反解换元定义域;

反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;

函数性质看指数,奇母奇子奇函数,

奇母偶子偶函数,偶母非奇偶函数;

图象第一象限内,函数增减看正负。

2.三角函数

三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;

向下三角平方和,倒数关系是对角,

变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,

保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1减余弦想正弦,

幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,

先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,

简单三角的方程,化为最简求解集;

3.不等式

解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。

非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。

图形函数来帮助,画图建模构造法。

4.数列

等差等比两数列,通项公式N项和。

两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。

数列求和比较难,错位相消巧转换,

取长补短高斯法,裂项求和公式算。

归纳思想非常好,编个程序好思考:

一算二看三联想,猜测证明不可少。

还有数学归纳法,证明步骤程序化:

首先验证再假定,从K向着K加1,

推论过程须详尽,归纳原理来肯定。

5.复数

虚数单位i一出,数集扩大到复数。

一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。

箭杆与X轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。

代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。

i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧用得结果。

虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。

几何运算图上看,加法平行四边形,

减法三角法则判;乘法除法的运算,

逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。

利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。

四条性质离不得,相等和模与共轭,

两个不会为实数,比较大小要不得。

复数实数很密切,须注意本质区别。

6.排列、组合、二项式定理

加法乘法两原理,贯穿始终的法则。

与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。

归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。

特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。

排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。

两条性质两公式,函数赋值变换式。

7.立体几何

点线面三位一体,柱锥台球为代表。

距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。

线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。

计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。

射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。

公理性质三垂线,解决问题一大片。

8.平面解析几何

有向线段直线圆,椭圆双曲抛物线,

参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,

两者—一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;

都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,

给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;

平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。

图形直观数入微,数学本是数形学

高考求数列通项公式要求掌握几种方法

在高考结束后,很多考生都会对答案,提前预估自己的分数,这样方便大家提前准备志愿填报。下面是我分享的2022全国新高考Ⅱ卷文科数学试题及答案解析,欢迎大家阅读。

2022全国新高考Ⅱ卷文科数学试题及答案解析

2022全国新高考Ⅱ卷文科数学试题还未出炉,待高考结束后,我会第一时间更新2022全国新高考Ⅱ卷文科数学试题,供大家对照、估分、模拟使用。

2022高考数学大题题型 总结

一、三角函数或数列

数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等差数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。

近几年来,关于数列方面的考题题主要包含以下几个方面:

(1)数列基本知识考查,主要包括基本的等差数列和等比数列概念以及通项公式和求和公式。

(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。

(3)应用题中的数列问题,一般是以增长率问题出现。

二、立体几何

高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

三、统计与概率

1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机事件的发生存在着规律性和随机事件概率的意义。

6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8.会计算事件在n次独立重复试验中恰好发生k次的概率.

四、解析几何(圆锥曲线)

高考解析几何剖析:

1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:

(1)、几何问题代数化。

(2)、用代数规则对代数化后的问题进行处理。

五、函数与导数

导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:

1.导数的常规问题:

(1)刻画函数(比初等 方法 精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

2022高考解答题评分标准

解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。

解题策略:

(1)常见失分因素:

1.对题意缺乏正确的理解,应做到慢审题快做题;

2.公式记忆不牢,考前一定要熟悉公式、定理、性质等;

3.思维不严谨,不要忽视易错点;

4.解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;

5.计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

6.轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。

2022全国新高考Ⅱ卷文科数学试题及答案解析相关 文章 :

★ 2022高考全国甲卷数学试题及答案

★ 2022年全国乙卷高考语文真题试卷及答案解析(未公布)

★ 2022年浙江高考数学试卷

★ 2022新高考2卷语文试题及答案一览

★ 2022全国高考试卷分几类

★ 2022高考数学必考知识点归纳最新

★ 2022年高考数学必考知识点总结最新

★ 2022高考文综理综各题型分数值一览

★ 2022年新高考Ⅰ卷语文题目与答案参考

★ 2022新高考Ⅱ卷选择创造未来作文12篇

急啊!!快高考了,如何学数列?

数列求和常用:错位相减法,裂项相消法:1/[n(n+k)]=1/k[(1/n)-1/(n+k)],倒序相加法,累加法:a下标(n+1)=[a下标(n)]+f(n)型可用

,累积法:a下标(n+1)=f(n)[a下标(n)]可用

注意解大题时常用an=a1(n=1),an=Sn-S下标(n-1),(n>=2)

还有一个重点就是

一个数列很多时候能拆成

如(a下标n)+x=k(a下标(n+1)+x),k为给出原数列a下标(n+1)的系数,

然后用等比公式求解即可

凡是数列不懂做的题目,用数学归纳法,一定能做出来

望采纳

谢谢

有任何不懂

请加好友

一一解答

谁能给我 总结一下高考数学基本公式

求数列通项公式的常规思想方法列举(配典型例题)

数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。

一. 观察法

例1:根据数列的前4项,写出它的一个通项公式:

(1)9,99,999,9999,…

(2)

(3)

(4)

解:(1)变形为:101-1,102―1,103―1,104―1,……

∴通项公式为:

(2) (3) (4) .

观察各项的特点,关键是找出各项与项数n的关系。

二、定义法

例2: 已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f (x) = (x-1)2,且a1 = f (d-1),a3 = f (d+1),b1 = f (q+1),b3 = f (q-1),

(1)求数列{ a n }和{ b n }的通项公式;

解:(1)∵a 1=f (d-1) = (d-2)2,a 3 = f (d+1)= d 2,

∴a3-a1=d2-(d-2)2=2d,

∴d=2,∴an=a1+(n-1)d = 2(n-1);又b1= f (q+1)= q2,b3 =f (q-1)=(q-2)2,

∴ =q2,由q∈R,且q≠1,得q=-2,

∴bn=b?qn-1=4?(-2)n-1

当已知数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求得首项及公差公比。

三、 叠加法

例3:已知数列6,9,14,21,30,…求此数列的一个通项。

解 易知

……

各式相加得 ∴

一般地,对于型如 类的通项公式,只要 能进行求和,则宜采用此方法求解。

四、叠乘法

例4:在数列{ }中, =1, (n+1)? =n? ,求 的表达式。

解:由(n+1)? =n? 得 ,

= … = 所以

一般地,对于型如 = (n)? 类的通项公式,当 的值可以求得时,宜采用此方法。

五、公式法

若已知数列的前 项和 与 的关系,求数列 的通项 可用公式

求解。

例5:已知下列两数列 的前n项和sn的公式,求 的通项公式。

(1) 。 (2)

解: (1)

= = =3

此时, 。∴ =3 为所求数列的通项公式。

(2) ,当 时

由于 不适合于此等式 。 ∴

注意要先分n=1和 两种情况分别进行运算,然后验证能否统一。

例6. 设数列 的首项为a1=1,前n项和Sn满足关系

求证:数列 是等比数列。

解析:因为

所以

所以,数列 是等比数列。

六、阶差法

例7.已知数列 的前 项和 与 的关系是

,其中b是与n无关的常数,且 。

求出用n和b表示的an的关系式。

解析:首先由公式: 得:

利用阶差法要注意:递推公式中某一项的下标与其系数的指数的关系,即

其和为 。

七、待定系数法

例8:设数列 的各项是一个等差数列与一个等比数列对应项的和,若c1=2,c2=4,c3=7,c4=12,求通项公式cn

解:设

点评:用待定系数法解题时,常先假定通项公式或前n项和公式为某一多项式,一般地,若数列 为等差数列:则 , (b、c为常数),若数列 为等比数列,则 , 。

八、 辅助数列法

有些数列本身并不是等差或等比数列,但可以经过适当的变形,构造出一个新的数列为等差或等比数列,从而利用这个数列求其通项公式。

例9.在数列 中, , , ,求 。

解析:在 两边减去 ,得

∴ 是以 为首项,以 为公比的等比数列,

∴ ,由累加法得

=

= … = =

=

例10.(2003年全国高考题)设 为常数,且 ( ),

证明:对任意n≥1,

证明:设,

用 代入可得

∴ 是公比为 ,首项为 的等比数列,

∴ ( ),

即:

型如an+1=pan+f(n) (p为常数且p≠0, p≠1)可用转化为等比数列等.

(1)f(n)= q (q为常数),可转化为an+1+k=p(an+k),得{ an+k }是以a1+k为首项,p为公比的等比数列。

例11:已知数 的递推关系为 ,且 求通项 。

解:∵ ∴

则辅助数列 是公比为2的等比数列

∴ 即 ∴

例12: 已知数列{ }中 且 ( ),,求数列的通项公式。

解:∵

∴ , 设 ,则

故{ }是以 为首项,1为公差的等差数列

∴ ∴

例13.(07全国卷Ⅱ理21)设数列 的首项 .

(1)求 的通项公式;

解:(1)由

整理得 .

又 ,所以 是首项为 ,公比为 的等比数列,得

注:一般地,对递推关系式an+1=pan+q (p、q为常数且,p≠0,p≠1)可等价地改写成

则{ }成等比数列,实际上,这里的 是特征方程x=px+q的根。

(2) f(n)为等比数列,如f(n)= qn (q为常数) ,两边同除以qn,得 ,令bn= ,可转化为bn+1=pbn+q的形式。

例14.已知数列{an}中,a1= , an+1= an+( )n+1,求an的通项公式。

解:an+1= an+( )n+1 乘以2n+1 得 2n+1an+1= (2nan)+1 令bn=2nan 则 bn+1= bn+1

易得 bn= 即 2nan=

∴ an=

(3) f(n)为等差数列

例15.已知已知数列{an}中,a1=1,an+1+an=3+2 n,求an的通项公式。

解:∵ an+1+an=3+2 n,an+2+an+1=3+2(n+1),两式相减得an+2-an=2

因此得,a2n+1=1+2(n-1), a2n=4+2(n-1), ∴ an= 。

注:一般地,这类数列是递推数列的重点与难点内容,要理解掌握。

(4) f(n)为非等差数列,非等比数列

例16.(07天津卷理)在数列 中, ,其中 .

(Ⅰ)求数列 的通项公式;

解:由 , ,

可得 ,

所以 为等差数列,其公差为1,首项为0,故 ,所以数列 的通项公式为 .

这种方法类似于换元法, 主要用于已知递推关系式求通项公式。

九、归纳、猜想

如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。

例17.(2002年北京春季高考)已知点的序列 ,其中 , , 是线段 的中点, 是线段 的中点,…, 是线段 的中点,…

(1) 写出 与 之间的关系式( )。

(2) 设 ,计算 ,由此推测 的通项公式,并加以证明。

(3) 略

解析:(1)∵ 是线段 的中点, ∴

(2) ,

= ,

= ,

猜想 ,下面用数学归纳法证明

当n=1时, 显然成立;

假设n=k时命题成立,即

则n=k+1时, =

=

∴ 当n=k+1时命题也成立,∴ 命题对任意 都成立。

例18:在数列{ }中, ,则 的表达式为 。

分析:因为 ,所以得: ,

猜想: 。

十、倒数法

数列有形如 的关系,可在等式两边同乘以 先求出

例19.设数列 满足 求

解:原条件变形为 两边同乘以 得 .

综而言之,等差、等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上;以上介绍的仅是常见可求通项基本方法,同学们应该在学习不断的探索才能灵活的应用.只要大家认真的分析求通项公式并不困难.

数列问题(高考题)越快越好,要有解答。

1.集合元素具有①确定性②互异性③无序性

2.集合表示方法①列举法 ②描述法

③韦恩图 ④数轴法

3.集合的运算

⑴ A∩(B∪C)=(A∩B)∪(A∩C)

⑵ Cu(A∩B)=CuA∪CuB

Cu(A∪B)=CuA∩CuB

4.集合的性质

⑴n元集合的子集数:2n

真子集数:2n-1;非空真子集数:2n-2

高中数学概念总结

一、 函数

1、 若集合A中有n 个元素,则集合A的所有不同的子集个数为 ,所有非空真子集的个数是 。

二次函数 的图象的对称轴方程是 ,顶点坐标是 。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即 , 和 (顶点式)。

2、 幂函数 ,当n为正奇数,m为正偶数,m<n时,其大致图象是

3、 函数 的大致图象是

由图象知,函数的值域是 ,单调递增区间是 ,单调递减区间是 。

二、 三角函数

1、 以角 的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角 的终边上任取一个异于原点的点 ,点P到原点的距离记为 ,则sin = ,cos = ,tg = ,ctg = ,sec = ,csc = 。

2、同角三角函数的关系中,平方关系是: , , ;

倒数关系是: , , ;

相除关系是: , 。

3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如: , = , 。

4、 函数 的最大值是 ,最小值是 ,周期是 ,频率是 ,相位是 ,初相是 ;其图象的对称轴是直线 ,凡是该图象与直线 的交点都是该图象的对称中心。

5、 三角函数的单调区间:

的递增区间是 ,递减区间是 ; 的递增区间是 ,递减区间是 , 的递增区间是 , 的递减区间是 。

6、

7、二倍角公式是:sin2 =

cos2 = = =

tg2 = 。

8、三倍角公式是:sin3 = cos3 =

9、半角公式是:sin = cos =

tg = = = 。

10、升幂公式是: 。

11、降幂公式是: 。

12、万能公式:sin = cos = tg =

13、sin( )sin( )= ,

cos( )cos( )= = 。

14、 = ;

= ;

= 。

15、 = 。

16、sin180= 。

17、特殊角的三角函数值:

0

sin 0 1 0

cos 1 0 0

tg 0 1 不存在 0 不存在

ctg 不存在 1 0 不存在 0

18、正弦定理是(其中R表示三角形的外接圆半径):

19、由余弦定理第一形式, =

由余弦定理第二形式,cosB=

20、△ABC的面积用S表示,外接圆半径用R表示,内切圆半径用r表示,半周长用p表示则:

① ;② ;

③ ;④ ;

⑤ ;⑥

21、三角学中的射影定理:在△ABC 中, ,…

22、在△ABC 中, ,…

23、在△ABC 中:

24、积化和差公式:

① ,

② ,

③ ,

④ 。

25、和差化积公式:

① ,

② ,

③ ,

④ 。

三、 反三角函数

1、 的定义域是[-1,1],值域是 ,奇函数,增函数;

的定义域是[-1,1],值域是 ,非奇非偶,减函数;

的定义域是R,值域是 ,奇函数,增函数;

的定义域是R,值域是 ,非奇非偶,减函数。

2、当 ;

对任意的 ,有:

当 。

3、最简三角方程的解集:

四、 不等式

1、若n为正奇数,由 可推出 吗? ( 能 )

若n为正偶数呢? ( 均为非负数时才能)

2、同向不等式能相减,相除吗 (不能)

能相加吗? ( 能 )

能相乘吗? (能,但有条件)

3、两个正数的均值不等式是:

三个正数的均值不等式是:

n个正数的均值不等式是:

4、两个正数 的调和平均数、几何平均数、算术平均数、均方根之间的关系是

6、 双向不等式是:

左边在 时取得等号,右边在 时取得等号。

五、 数列

1、等差数列的通项公式是 ,前n项和公式是: = 。

2、等比数列的通项公式是 ,

前n项和公式是:

3、当等比数列 的公比q满足 <1时, =S= 。一般地,如果无穷数列 的前n项和的极限 存在,就把这个极限称为这个数列的各项和(或所有项的和),用S表示,即S= 。

4、若m、n、p、q∈N,且 ,那么:当数列 是等差数列时,有 ;当数列 是等比数列时,有 。

5、 等差数列 中,若Sn=10,S2n=30,则S3n=60;

6、等比数列 中,若Sn=10,S2n=30,则S3n=70;

六、 复数

1、 怎样计算?(先求n被4除所得的余数, )

2、 是1的两个虚立方根,并且:

3、 复数集内的三角形不等式是: ,其中左边在复数z1、z2对应的向量共线且反向(同向)时取等号,右边在复数z1、z2对应的向量共线且同向(反向)时取等号。

4、 棣莫佛定理是:

5、 若非零复数 ,则z的n次方根有n个,即:

它们在复平面内对应的点在分布上有什么特殊关系?

都位于圆心在原点,半径为 的圆上,并且把这个圆n等分。

6、 若 ,复数z1、z2对应的点分别是A、B,则△AOB(O为坐标原点)的面积是 。

7、 = 。

8、 复平面内复数z对应的点的几个基本轨迹:

① 轨迹为一条射线。

② 轨迹为一条射线。

③ 轨迹是一个圆。

④ 轨迹是一条直线。

⑤ 轨迹有三种可能情形:a)当 时,轨迹为椭圆;b)当 时,轨迹为一条线段;c)当 时,轨迹不存在。

⑥ 轨迹有三种可能情形:a)当 时,轨迹为双曲线;b) 当 时,轨迹为两条射线;c) 当 时,轨迹不存在。

七、 排列组合、二项式定理

1、 加法原理、乘法原理各适用于什么情形?有什么特点?

加法分类,类类独立;乘法分步,步步相关。

2、排列数公式是: = = ;

排列数与组合数的关系是:

组合数公式是: = = ;

组合数性质: = + =

= =

3、 二项式定理: 二项展开式的通项公式:

八、 解析几何

1、 沙尔公式:

2、 数轴上两点间距离公式:

3、 直角坐标平面内的两点间距离公式:

4、 若点P分有向线段 成定比λ,则λ=

5、 若点 ,点P分有向线段 成定比λ,则:λ= = ;

=

=

若 ,则△ABC的重心G的坐标是 。

6、求直线斜率的定义式为k= ,两点式为k= 。

7、直线方程的几种形式:

点斜式: , 斜截式:

两点式: , 截距式:

一般式:

经过两条直线 的交点的直线系方程是:

8、 直线 ,则从直线 到直线 的角θ满足:

直线 与 的夹角θ满足:

直线 ,则从直线 到直线 的角θ满足:

直线 与 的夹角θ满足:

9、 点 到直线 的距离:

10、两条平行直线 距离是

11、圆的标准方程是:

圆的一般方程是:

其中,半径是 ,圆心坐标是

思考:方程 在 和 时各表示怎样的图形?

12、若 ,则以线段AB为直径的圆的方程是

经过两个圆

的交点的圆系方程是:

经过直线 与圆 的交点的圆系方程是:

13、圆 为切点的切线方程是

一般地,曲线 为切点的切线方程是: 。例如,抛物线 的以点 为切点的切线方程是: ,即: 。

注意:这个结论只能用来做选择题或者填空题,若是做解答题,只能按照求切线方程的常规过程去做。

14、研究圆与直线的位置关系最常用的方法有两种,即:

①判别式法:Δ>0,=0,<0,等价于直线与圆相交、相切、相离;

②考查圆心到直线的距离与半径的大小关系:距离大于半径、等于半径、小于半径,等价于直线与圆相离、相切、相交。

15、抛物线标准方程的四种形式是:

16、抛物线 的焦点坐标是: ,准线方程是: 。

若点 是抛物线 上一点,则该点到抛物线的焦点的距离(称为焦半径)是: ,过该抛物线的焦点且垂直于抛物线对称轴的弦(称为通径)的长是: 。

17、椭圆标准方程的两种形式是: 和

18、椭圆 的焦点坐标是 ,准线方程是 ,离心率是 ,通径的长是 。其中 。

19、若点 是椭圆 上一点, 是其左、右焦点,则点P的焦半径的长是 和 。

20、双曲线标准方程的两种形式是: 和

21、双曲线 的焦点坐标是 ,准线方程是 ,离心率是 ,通径的长是 ,渐近线方程是 。其中 。

22、与双曲线 共渐近线的双曲线系方程是 。与双曲线 共焦点的双曲线系方程是 。

23、若直线 与圆锥曲线交于两点A(x1,y1),B(x2,y2),则弦长为 ;

若直线 与圆锥曲线交于两点A(x1,y1),B(x2,y2),则弦长为 。

24、圆锥曲线的焦参数p的几何意义是焦点到准线的距离,对于椭圆和双曲线都有: 。

25、平移坐标轴,使新坐标系的原点 在原坐标系下的坐标是(h,k),若点P在原坐标系下的坐标是 在新坐标系下的坐标是 ,则 = , = 。

九、 极坐标、参数方程

1、 经过点 的直线参数方程的一般形式是: 。

2、 若直线 经过点 ,则直线参数方程的标准形式是: 。其中点P对应的参数t的几何意义是:有向线段 的数量。

若点P1、P2、P是直线 上的点,它们在上述参数方程中对应的参数分别是 则: ;当点P分有向线段 时, ;当点P是线段P1P2的中点时, 。

3、圆心在点 ,半径为 的圆的参数方程是: 。

3、 若以直角坐标系的原点为极点,x轴正半轴为极轴建立极坐标系,点P的极坐标为 直角坐标为 ,则 , , 。

4、 经过极点,倾斜角为 的直线的极坐标方程是: ,

经过点 ,且垂直于极轴的直线的极坐标方程是: ,

经过点 且平行于极轴的直线的极坐标方程是: ,

经过点 且倾斜角为 的直线的极坐标方程是: 。

5、 圆心在极点,半径为r的圆的极坐标方程是 ;

圆心在点 的圆的极坐标方程是 ;

圆心在点 的圆的极坐标方程是 ;

圆心在点 ,半径为 的圆的极坐标方程是 。

6、 若点M 、N ,则 。

十、 立体几何

1、求二面角的射影公式是 ,其中各个符号的含义是: 是二面角的一个面内图形F的面积, 是图形F在二面角的另一个面内的射影, 是二面角的大小。

2、若直线 在平面 内的射影是直线 ,直线m是平面 内经过 的斜足的一条直线, 与 所成的角为 , 与m所成的角为 , 与m所成的角为θ,则这三个角之间的关系是 。

3、体积公式:

柱体: ,圆柱体: 。

斜棱柱体积: (其中, 是直截面面积, 是侧棱长);

锥体: ,圆锥体: 。

台体: , 圆台体:

球体: 。

4、 侧面积:

直棱柱侧面积: ,斜棱柱侧面积: ;

正棱锥侧面积: ,正棱台侧面积: ;

圆柱侧面积: ,圆锥侧面积: ,

圆台侧面积: ,球的表面积: 。

5、几个基本公式:

弧长公式: ( 是圆心角的弧度数, >0);

扇形面积公式: ;

圆锥侧面展开图(扇形)的圆心角公式: ;

圆台侧面展开图(扇环)的圆心角公式: 。

经过圆锥顶点的最大截面的面积为(圆锥的母线长为 ,轴截面顶角是θ):

十一、比例的几个性质

1、比例基本性质:

2、反比定理:

3、更比定理:

5、 合比定理;

6、 分比定理:

7、 合分比定理:

8、 分合比定理:

9、 等比定理:若 , ,则 。

十二、复合二次根式的化简

当 是一个完全平方数时,对形如 的根式使用上述公式化简比较方便。

⑵并集元素个数:

n(A∪B)=nA+nB-n(A∩B)

5.N 自然数集或非负整数集

Z 整数集 Q有理数集 R实数集

6.简易逻辑中符合命题的真值表

p 非p

真 假

假 真

二.函数

1.二次函数的极点坐标:

函数 的顶点坐标为

2.函数 的单调性:

在 处取极值

3.函数的奇偶性:

在定义域内,若 ,则为偶函数;若 则为奇函数。

Xn=PXn-1-QXn-2

Xn-PXn-1+QXn-2=0 --------------(1)

将其化成下面格式(待定系数法):

Xn-A*Xn-1=B(Xn-1-AXn-2) ------------(2)

将(2)式展开,然后与(1)式的各项比较得:

A+B=P -------------(3)

A*B=Q -------------(4)

因此A,B为X^2-PX+Q=0的两根.不防设A=α,B=β

Xn-α*Xn-1=β(Xn-1-αXn-2) ----------------(5)

依(5)的递推式(分别代入n-1,n-2,n-3,...,4,3得:

Xn-1-α*Xn-2=β(Xn-2-αXn-3)-----------------(5.1)

Xn-2-α*Xn-3=β(Xn-3-αXn-4)-----------------(5.2)

Xn-3-α*Xn-4=β(Xn-4-αXn-5)-----------------(5.3)

......

X4-α*X3=β(X3-αX2)-----------------(5.n-4)

X3-α*X2=β(X2-αX1)-----------------(5.n-3)

(5)*(5.1)*(5.2)*(5.3)*...*(5.n-4)*(5.n-3)并消掉相同项:

Xn-α*Xn-1=(X2-αX1)*β^(n-2)

Xn=(X2-αX1)*β^(n-2) + α*Xn-1

=(X2-αX1)*β^(n-2) + (X2-αX1)*β^(n-3)*α + α^2*Xn-2

=(X2-αX1)*β^(n-2) + (X2-αX1)*β^(n-3)*α + (X2-αX1)*β^(n-4)*α^2 + α^2*Xn-2

... ...

=(X2-αX1)*β^(n-2) + (X2-αX1)*β^(n-3)*α + (X2-αX1)*β^(n-4)*α^2+...+(X2-αX1)*β^(n-m)*α^(m-2)+...+(X2-αX1)*α^(n-2) + α^(n-1)*X1

等比数列求和(公比为:α/β) + α^(n-1)*X1

过程比较复杂,建议你参考:

斐波那挈数列通项公式的推导:

斐波那契数列:1,1,2,3,5,8,13,21……

如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:

F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)

显然这是一个线性递推数列。

通项公式的推导方法一:利用特征方程

线性递推数列的特征方程为:

X^2=X+1

解得

X1=(1+√5)/2, X2=(1-√5)/2.

则F(n)=C1*X1^n + C2*X2^n

∵F(1)=F(2)=1

∴C1*X1 + C2*X2

C1*X1^2 + C2*X2^2

解得C1=1/√5,C2=-1/√5

∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}√5表示根号5

通项公式的推导方法二:普通方法

设常数r,s

使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]

则r+s=1, -rs=1

n≥3时,有

F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]

F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]

F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]

……

F(3)-r*F(2)=s*[F(2)-r*F(1)]

将以上n-2个式子相乘,得:

F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]

∵s=1-r,F(1)=F(2)=1

上式可化简得:

F(n)=s^(n-1)+r*F(n-1)

那么:

F(n)=s^(n-1)+r*F(n-1)

= s^(n-1) + r*s^(n-2) + r^2*F(n-2)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)

……

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)

(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)

=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)

=(s^n - r^n)/(s-r)

r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2

则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

文章标签: # 数列 # 公式 # 方程