您现在的位置是: 首页 > 教育政策 教育政策
圆锥曲线高考题合集2023,圆锥曲线高考题
tamoadmin 2024-06-02 人已围观
简介1.高考数学中圆锥曲线的经典例子?2.跪求高等数学解析几何题目3.高考圆锥曲线有哪些类型4.高中数学题求解析。5.高考有考离心率吗 本文中高考试题第(1)问是前作《 对圆锥曲线上某一点处张角所对弦过定点问题的探究——以2015-2021年高考圆锥曲线压轴题为例(20220401修订) 》中 定理2.2 的应用.
1.高考数学中圆锥曲线的经典例子?
2.跪求高等数学解析几何题目
3.高考圆锥曲线有哪些类型
4.高中数学题求解析。
5.高考有考离心率吗
本文中高考试题第(1)问是前作《 对圆锥曲线上某一点处张角所对弦过定点问题的探究——以2015-2021年高考圆锥曲线压轴题为例(20220401修订) 》中 定理2.2 的应用.
高考数学中圆锥曲线的经典例子?
问题一:圆锥曲线到大学才知道的几何性质有那些? 列上一些 带证明更谢谢了 现在高中出题基本上都是大学 高考源于教材,必须略高于教材。
本人结合历年高考编著一本《高考常考的大一数学》有关圆锥曲线的有四线一方程。
1、 若P(x0,y0)在椭圆x2/a2+y2/b2=1上,得到切线方程为
x0x/a2+y0y/b2=1;
若P(x0,y0)在椭圆x2/a2+y2/b2=1外,得到切点弦方程为
x0x/a2+y0y/b2=1;
这两个方程形式一样,含义不一样。PPPPPP2
2、 若P(x0,y0)在双曲线x2/a2-y2/b2=1上,得到切线方程为
x0x/a2-y0y/b2=1;
若P(x0,y0)在椭圆x2/a2-y2/b2=1外,得到切点弦方程为
x0x/a2-y0y/b2=1;
3、 若P(x0,y0)在抛物线y2=2px上,得到切线方程为
y0y=p(x0+x);
若P(x0,y0)在抛物线y2=2px外,得到切点弦方程为
y0y=p(x0+x);
与庆杰高歌同行数学加强班为你提供!《高考常考的大一数学》一本15元,若要,短信联系13608614549
问题二:圆锥曲线的解题技巧? 1.圆锥曲线的两个定义:
(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F ,F 的距离的和等于常数 ,且此常数 一定要大于 ,当常数等于 时,轨迹是线段F F ,当常数小于 时,无轨迹;双曲线中,与两定点F ,F 的距离的差的绝对值等于常数 ,且此常数 一定要小于|F F |,定义中的“绝对值”与 <|F F |不可忽视。若 =|F F |,则轨迹是以F ,F 为端点的两条射线,若 |F F |,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如方程 表示的曲线是_____(答:双曲线的左支)
(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
如已知点 及抛物线 上一动点P(x,y),则y+|PQ|的最小值是_____(答2)
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):
(1)椭圆:焦点在 轴上时 ( ),焦点在 轴上时 =1( )。方程 表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。
如(1)已知方程 表示椭圆,则 的取值范围为____(答: );
(2)若 ,且 ,则 的最大值是____, 的最小值是___(答: )
(2)双曲线:焦点在 轴上: =1,焦点在 轴上: =1( )。方程 表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。
如设中心在坐标原点 ,焦点 、 在坐标轴上,离心率 的双曲线C过点 ,则C的方程为_______(答: )
(3)抛物线:开口向右时 ,开口向左时 ,开口向上时 ,开口向下时 。
如定长为3的线段AB的两个端点在y=x2上移动,AB中点为M,求点M到x轴的最短距离。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):
(1)椭圆:由 , 分母的大小决定,焦点在分母大的坐标轴上。
如已知方程 表示焦点在y轴上的椭圆,则m的取值范围是__(答: )
(2)双曲线:由 , 项系数的正负决定,焦点在系数为正的坐标轴上;
(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F ,F 的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数 ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中, 最大, ,在双曲线中, 最大, 。
4.圆锥曲线的几何性质:
(1)椭圆(以 ( )为例):①范围: ;②焦点:两个焦点 ;③对称性:两条对称轴 ,一个对称中心(0,0),四个顶点 ,其中长轴长为2 ,短轴长为2 ;④准线:两条准线 ; ⑤离心率: ,椭圆 , 越小,椭圆越圆; 越大,椭圆越扁。
如(1)若椭圆 的离心率 ,则 的值是__(答:3或 );
(2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__(答: )
(2)双曲线(以 ( )为例):①范围: 或 ;②焦点:两个焦点 ;③对称性:两条对称轴 ,一个对称中心(0,0),两个顶点 ,其中实轴长为2 ,虚轴长为2 ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 ;④准线:两条准线 ; ⑤离心率: ,双曲线 ,等轴双曲线 , 越......>>
问题三:圆锥曲线六大名圆分别是什么,有什么性质? 圆锥曲线统一定义:(第二定义)
平面上到定点(焦点)的距离与到定直线(准线)的距离为定值(离心率e)的点的 *** .而根据e的大小分为椭圆,抛物线,双曲线.圆可看作e为0的曲线.
1.0x^2/a^2+y^2/b^2=1(0y^2/a^2+y^2/b^2=1(0a^2=b^2+c^2
椭圆上任意一点到两焦点距离之和为2a(定值),且大于焦距2c,这是第一定义
问题四:谁能告诉我现在什么游戏正在公测? 去17173
跪求高等数学解析几何题目
高中数学合集百度网盘下载
链接:提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
高考圆锥曲线有哪些类型
求圆锥曲线方程 求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法. ●难点磁场 1.(★★★★★)双曲线 =1(b∈N)的两个焦点F1、F2,P为双曲线上一点,|OP|<5,|PF1|,|F1F2|,|PF2|成等比数列,则b2=_________. 2.(★★★★)如图,设圆P满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长比为3∶1,在满足条件①、②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程. ●案例探究 [例1]某电厂冷却塔的外形是如图所示的双曲线的一部分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A′是双曲线的顶点,C、C′是冷却塔上口直径的两个端点,B、B′是下底直径的两个端点,已知AA′=14 m,CC′=18 m,BB′=22 m,塔高20 m. (1)建立坐标系并写出该双曲线方程. (2)求冷却塔的容积(精确到10 m2,塔壁厚度不计,π取3.14). 命题意图:本题考查选择适当的坐标系建立曲线方程和解方程组的基础知识,考查应用所学积分知识、思想和方法解决实际问题的能力,属★★★★★级题目. 知识依托:待定系数法求曲线方程;点在曲线上,点的坐标适合方程;积分法求体积. 错解分析:建立恰当的坐标系是解决本题的关键,积分求容积是本题的重点. 技巧与方法:本题第一问是待定系数法求曲线方程,第二问是积分法求体积. 解:如图,建立直角坐标系xOy,使AA′在x轴上,AA′的中点为坐标原点O,CC′与BB′平行于x轴. 设双曲线方程为 =1(a>0,b>0),则a= AA′=7 又设B(11,y1),C(9,x2)因为点B、C在双曲线上,所以有 由题意,知y2-y1=20,由以上三式得:y1=-12,y2=8,b=7 故双曲线方程为 =1. (2)由双曲线方程,得x2= y2+49 设冷却塔的容积为V(m3),则V=π ,经计算,得V=4.25×103(m3) 答:冷却塔的容积为4.25×103m3. [例2]过点(1,0)的直线l与中心在原点,焦点在x轴上且离心率为 的椭圆C相交于A、B两点,直线y= x过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线l对称,试求直线l与椭圆C的方程. 命题意图:本题利用对称问题来考查用待定系数法求曲线方程的方法,设计新颖,基础性强,属★★★★★级题目. 知识依托:待定系数法求曲线方程,如何处理直线与圆锥曲线问题,对称问题. 错解分析:不能恰当地利用离心率设出方程是学生容易犯的错误.恰当地利用好对称问题是解决好本题的关键. 技巧与方法:本题是典型的求圆锥曲线方程的问题,解法一,将A、B两点坐标代入圆锥曲线方程,两式相减得关于直线AB斜率的等式.解法二,用韦达定理. 解法一:由e= ,得 ,从而a2=2b2,c=b. 设椭圆方程为x2+2y2=2b2,A(x1,y1),B(x2,y2)在椭圆上. 则x12+2y12=2b2,x22+2y22=2b2,两式相减得,(x12-x22)+2(y12-y22)=0, 设AB中点为(x0,y0),则kAB=- ,又(x0,y0)在直线y= x上,y0= x0,于是- = -1,kAB=-1,设l的方程为y=-x+1. 右焦点(b,0)关于l的对称点设为(x′,y′), 由点(1,1-b)在椭圆上,得1+2(1-b)2=2b2,b2= . ∴所求椭圆C的方程为 =1,l的方程为y=-x+1. 解法二:由e= ,从而a2=2b2,c=b. 设椭圆C的方程为x2+2y2=2b2,l的方程为y=k(x-1), 将l的方程代入C的方程,得(1+2k2)x2-4k2x+2k2-2b2=0,则x1+x2= ,y1+y2=k(x1-1)+k(x2-1)=k(x1+x2)-2k=- . 直线l:y= x过AB的中点( ),则 ,解得k=0,或k= -1. 若k=0,则l的方程为y=0,焦点F(c,0)关于直线l的对称点就是F点本身,不能在椭圆C上,所以k=0舍去,从而k=-1,直线l的方程为y=-(x-1),即y=-x+1,以下同解法一. [例3]如图,已知△P1OP2的面积为 ,P为线段P1P2的一个三等分点,求以直线OP1、OP2为渐近线且过点P的离心率为 的双曲线方程. 命题意图:本题考查待定系数法求双曲线的方程以及综合运用所学知识分析问题、解决问题的能力,属★★★★★级题目. 知识依托:定比分点坐标公式;三角形的面积公式;以及点在曲线上,点的坐标适合方程. 错解分析:利用离心率恰当地找出双曲线的渐近线方程是本题的关键,正确地表示出 △P1OP2的面积是学生感到困难的. 技巧与方法:利用点P在曲线上和△P1OP2的面积建立关于参数a、b的两个方程,从而求出a、b的值. 解:以O为原点,∠P1OP2的角平分线为x轴建立如图所示的直角坐标系. 设双曲线方程为 =1(a>0,b>0) 由e2= ,得 . ∴两渐近线OP1、OP2方程分别为y= x和y=- x 设点P1(x1, x1),P2(x2,- x2)(x1>0,x2>0),则由点P分 所成的比λ= =2,得P点坐标为( ),又点P在双曲线 =1上,所以 =1, 即(x1+2x2)2-(x1-2x2)2=9a2,整理得8x1x2=9a2 ① 即x1x2= ② 由①、②得a2=4,b2=9 故双曲线方程为 =1. ●锦囊妙计 一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤. 定形——指的是二次曲线的焦点位置与对称轴的位置. 定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m>0,n>0). 定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小. ●歼灭难点训练 一、选择题 1.(★★★★)已知直线x+2y-3=0与圆x2+y2+x-6y+m=0相交于P、Q两点,O为坐标原点,若OP⊥OQ,则m等于( ) A.3 B.-3 C.1 D.-1 2.(★★★★)中心在原点,焦点在坐标为(0,±5 )的椭圆被直线3x-y-2=0截得的弦的中点的横坐标为 ,则椭圆方程为( ) 二、填空题3.(★★★★)直线l的方程为y=x+3,在l上任取一点P,若过点P且以双曲线12x2-4y2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_________.4.(★★★★)已知圆过点P(4,-2)、Q(-1,3)两点,且在y轴上截得的线段长为4 ,则该圆的方程为_________.三、解答题5.(★★★★★)已知椭圆的中心在坐标原点,焦点在x轴上,它的一个焦点为F,M是椭圆上的任意点,|MF|的最大值和最小值的几何平均数为2,椭圆上存在着以y=x为轴的对称点M1和M2,且|M1M2|= ,试求椭圆的方程.6.(★★★★)某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其中最长的支柱的长.7.(★★★★★)已知圆C1的方程为(x-2)2+(y-1)2= ,椭圆C2的方程为 =1(a>b>0),C2的离心率为 ,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径,求直线AB的方程和椭圆C2的方程. 参考答案难点磁场1.解析:设F1(-c,0)、F2(c,0)、P(x,y),则|PF1|2+|PF2|2=2(|PO|2+|F1O|2)<2(52+c2),即|PF1|2+|PF2|2<50+2c2,又∵|PF1|2+|PF2|2=(|PF1|-|PF2|)2+2|PF1|·|PF2|,依双曲线定义,有|PF1|-|PF2|=4,依已知条件有|PF1|·|PF2|=|F1F2|2=4c2∴16+8c2<50+2c2,∴c2< ,又∵c2=4+b2< ,∴b2< ,∴b2=1.答案:12.解法一:设所求圆的圆心为P(a,b),半径为r,则点P到x轴、y轴的距离分别为|b|、|a|∵圆P截y轴所得弦长为2,∴r2=a2+1又由题设知圆P截x轴所得劣弧对的圆心角为90°,故弦长|AB|= r,故r2=2b2,从而有2b2-a2=1又∵点P(a,b)到直线x-2y=0的距离d= ,因此,5d2=|a-2b|2=a2+4b2-4ab≥a2+4b2-2(a2+b2)=2b2-a2=1,当且仅当a=b时上式等号成立,此时5d2=1,从而d取最小值,为此有 ,∵r2=2b2, ∴r2=2于是所求圆的方程为:(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2解法二:设所求圆P的方程为(x-a)2+(y-b)2=r2(r>0)设A(0,y1),B(0,y2)是圆与y轴的两个交点,则y1、y2是方程a2+(y-b)2=r2的两根,∴y1,2=b± 由条件①得|AB|=2,而|AB|=|y1-y2|,得r2-a2=1设点C(x1,0)、D(x2,0)为圆与x轴的两个交点,则x1,x2是方程(x-a)2+b2=r2的两个根,∴x1,2=a± 由条件②得|CD|= r,又由|CD|=|x2-x1|,得2b2=r2,故2b2=a2+1设圆心P(a,b)到直线x-2y=0的距离为d= ∴a-2b=± d,得a2=(2b± d)2=4b2±4 bd+5d2又∵a2=2b2-1,故有2b2±4 bd+5d2+1=0.把上式看作b的二次方程,∵方程有实根.∴Δ=8(5d2-1)≥0,得5d2≥1.∴dmin= ,将其代入2b2±4 bd+5d2+1=0,得2b2±4b+2=0,解得b=±1.从而r2=2b2=2,a=± =±1于是所求圆的方程为(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2歼灭难点训练一、1.解析:将直线方程变为x=3-2y,代入圆的方程x2+y2+x-6y+m=0,得(3-2y)2+y2+(3-2y)+m=0.整理得5y2-20y+12+m=0,设P(x1,y1)、Q(x2,y2)则y1y2= ,y1+y2=4.又∵P、Q在直线x=3-2y上,∴x1x2=(3-2y1)(3-2y2)=4y1y2-6(y1+y2)+9故y1y2+x1x2=5y1y2-6(y1+y2)+9=m-3=0,故m=3.答案:A2.解析:由题意,可设椭圆方程为: =1,且a2=50+b2,即方程为 =1.将直线3x-y-2=0代入,整理成关于x的二次方程.由x1+x2=1可求得b2=25,a2=75.答案:C二、3.解析:所求椭圆的焦点为F1(-1,0),F2(1,0),2a=|PF1|+|PF2|.欲使2a最小,只需在直线l上找一点P.使|PF1|+|PF2|最小,利用对称性可解.?答案: =14.解析:设所求圆的方程为(x-a)2+(y-b)2=r2则有 由此可写所求圆的方程.答案:x2+y2-2x-12=0或x2+y2-10x-8y+4=0三、5.解:|MF|max=a+c,|MF|min=a-c,则(a+c)(a-c)=a2-c2=b2,∴b2=4,设椭圆方程为 ①设过M1和M2的直线方程为y=-x+m ②将②代入①得:(4+a2)x2-2a2mx+a2m2-4a2=0 ③设M1(x1,y1)、M2(x2,y2),M1M2的中点为(x0,y0),则x0= (x1+x2)= ,y0=-x0+m= .代入y=x,得 ,由于a2>4,∴m=0,∴由③知x1+x2=0,x1x2=- ,又|M1M2|= ,代入x1+x2,x1x2可解a2=5,故所求椭圆方程为: =1.6.解:以拱顶为原点,水平线为x轴,建立坐标系,如图,由题意知,|AB|=20,|OM|=4,A、B坐标分别为(-10,-4)、(10,-4)设抛物线方程为x2=-2py,将A点坐标代入,得100=-2p×(-4),解得p=12.5,于是抛物线方程为x2=-25y.由题意知E点坐标为(2,-4),E′点横坐标也为2,将2代入得y=-0.16,从而|EE′|=(-0.16)-(-4)=3.84.故最长支柱长应为3.84米.7.解:由e= ,可设椭圆方程为 =1,又设A(x1,y1)、B(x2,y2),则x1+x2=4,y1+y2=2,又 =1,两式相减,得 =0,即(x1+x2)(x1-x2)+2(y1+y2)(y1-y2)=0.化简得 =-1,故直线AB的方程为y=-x+3,代入椭圆方程得3x2-12x+18-2b2=0.有Δ=24b2-72>0,又|AB|= ,得 ,解得b2=8.故所求椭圆方程为 =1.
高中数学题求解析。
你好,很高兴为你解答这个问题。
高考当中一般圆锥曲线大题,作为倒数第二道或者倒数第一道压轴大题。
我们以新课标全国卷为例。
圆锥曲线大题出在第20题。
具体题目,第一问往往是基础知识的考察,即离心率,标准方程,不同圆锥曲线中a,b,c,的简单识别计算。难度较小。
第二问,我们一般叫做圆锥曲线和直线的位置关系。这是近些年来的主流考法。用代数的角度,解决几何问题。
圆锥曲线分作,椭圆,抛物线,双曲线,圆。高考当中出现的圆锥曲线,除了选填当中可能出现圆,大题当中,主要是椭圆,偶尔有抛物线,很少出现双曲线,不出现圆。希望可以帮到你
高考有考离心率吗
一、圆锥曲线题型的主要特点:一般来说解题思路比较简单,但运算量较为繁琐。因此要想攻破这类题型必须加强以下几个方面的能力:一是掌握解题基本的方法和常用公式;二是提高运算能力和总结一些简便运算的技巧;三是理解和运用主要的几大数学思想(即数形结合思想、函数思想、分类讨论思想、转化思想和整体替换思想);四是掌握一些常用的设点技巧(这是减少运算量的关键)。
二、高考试题中该类题型的分布位置:一般放在第四道大题的位置。它一般分为三个小题:第一小题一般是求点的轨迹(4分);第二和第三小题是其它类型的题(如求定点、定直线、定距离、最值等问题),分别占5分。(设直线的方程时要注意斜率是否存在)
三、圆锥曲线的重点理论知识:(1)求动点轨迹的的基本方法:1、定义法(也称为直接法或几何法):根据圆锥曲线的定义求即可(注意:此法应优先考虑)2、间接法:先设出动点的坐标,在根据已知条件寻找几个等量关系,再化简即可;3、交轨法:转化为其它曲线的交点轨迹;4、参数法:先用参数表示动点坐标的表达式,再消去参数即可。(2)椭圆的第二定义:若一动点到定点的距离与到定直线的距离的比小于1,则该动点的轨迹为椭圆。(该比值其实就是离心率,该定点为焦点,该直线为准线)(双曲线的第二定义与此类似,只需把比值改为大于1即可)(3)椭圆的焦半径公式:AF1=a-ex,AF2=a+ex;椭圆的焦三角形的面积公式:SpF1F2=b^2*tan@/2;双曲线的焦半径公式:AF1=ex-a,AF2=ex+a;双曲线的焦三角形的面积公式:SPF1F2=b^2/tan@/2。(其中A为椭圆或双曲线上的点,x为A点的横坐标,e为离心率,@为F1pF2的角度)(4)若过抛物线y^2=2px的焦点的直线与抛物线交于A和B两点,设A(x1,y1).B(x2,y2),则有x1*x2=p^2/4,y1*y2=-p^2。(以上的结论最好自行推导一下)(5)当椭圆的焦三角形pF1F2的顶点p与短轴的端点重合时,角F1pF2的角度最大。(6)解圆锥曲线问题时常用的几个重要公式(务必要理解并牢记它,这是不会做这类题也可以拿到分的关键):1、韦达定理:x1+x2=-b/a,x1*x2=c/a 2、弦长公式:d=(1+k^2)*((x1+x2)^2-4x1x2)的值的算术平方根 3、中点弦公式(其作用主要是建立中点的坐标与直线斜率的关系):1、直线与椭圆(x^2/a^2+y^2/b^2=1)相交则k=(y1-y2)/(x1-x2)=-b^2*x0/(a^2*y0) 2、直线与双曲线(x^2/a^2-y^2/b^2=1)相交则k=b^2*x0/(a^2*y0) 3、直线与抛物线(y^2=2px)相交则k=p/y0 (其中A(x1,y1)和B(x2,y2)为两曲线的交点,而(x0,y0)为A和B的中点,k为直线的斜率) 圆锥曲线的题型大致可以分为以下几类:1、定点问题 2、定直线问题 3、最大最小值问题 4、定长或定距离问题 5、参数范围问题 6、与向量相结合的题型 (至于这几种题型的具体解题方法先让你自己通过练习大量的题来进行归纳总结,暂时不直接给出给你,因为只有通过你自己的思考再总结出来的东西理解才更加深刻,运用才更自如)(当然圆锥曲线的其它题型与方法还有很多,要靠你自己去挖掘,这里不便给出,也不可能给出,因为数学的题型是千变万化的,但也是非常有规律可寻的)
下面留几道题给你做练习
1、已知椭圆G:x^2/4+y^2=1,过点(m,0)做圆x^2+y^2=1的切线l交椭圆G于A,B两点。
(1)求椭圆G 的焦点坐标和离心率;
(2)将|AB|表示为m的函数,并求|AB|的最大值。
2、P(x0,y0)(y不等于正负a)是双曲线E:x^2/a^2-y^2/b^2=1(a>0,b>0)上一点,M,N分别是双曲的左右顶点,直线PM,PN的斜率之积为1/5
(1)求双曲线的离心率
3、已知直线L:y=x+m,m属于实数
(1)若以点M(2,0)为圆心的圆与直线L相切于点p,且点p在y轴上,求该圆的方程;
(2)若直线L关于x轴对称的直线l,问直线l与抛物线C:x^2=4y是否相切?说明理由。
4、椭圆有两顶点A(-1,0)、B(1,0),过其焦点F(0,1)的直线L与椭圆交于C、D两点,并与x轴交于点p,直线AC与直线BD交于点Q
(1)当|CD|=3/2*2的算术平方根时,求直线L的方程;
(2)当点P异于A、B两点时,求证:向量OP与向量OQ的向量积为定值。(答案暂时不给出。学会如何分析题目才是最重要的,做题时一定要全身心地投入,不要老是想着对答案)(只要思路对了,答案就不是问题了)
高考有考离心率。是高考的必考内容,离心率历年来是圆锥曲线客观题的考查重点,对于求圆锥曲线离心率的问题,通常有两类, 一是求椭圆和双曲线的离心率,二是求椭圆和双曲线离心率的取值范围,属于中低档次的题型,对大多数学生来说是没什么难度的。
一般来说,求椭圆(或双曲线)的离心率,只需要由条件得到一个关于基本量a,?b,?c,e的一个方程,就可以从中求出离心率.但如果选择方法不恰当,则极可能“小题”大作,误入歧途。
许多学生认为用一些所谓的“高级”结论可以使结果马上水落石出,一针见血,其实不然,对于这类题,用最淳朴的定义来解题是最好的。
椭圆的三种离心率公式
e=c/a(c是指半焦距;a是指长半轴)。离心率=(ra-rp)/(ra+rp),ra指远点距离,rp指近点距离。e=c/a=√[(a?-b?)/a?]=√[1-(b/a)?]。
椭圆的离心率:离心率统一定义是动点到焦点的距离和动点到准线的距离之比。椭圆的离心率可以形象地理解为,在椭圆的长轴不变的前提下,两个焦点离开中心的程度。既然是距离,就不会出现负数了。椭圆上任意一点到两焦点的距离等于a±ex。