您现在的位置是: 首页 > 教育政策 教育政策
函数在高考考点怎么写_函数在高考考点
tamoadmin 2024-05-23 人已围观
简介1.如何有效掌握高中数学三角函数?数学高考必考知识点总结有:1、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项。2、复合函数奇偶性:内偶则偶,内奇同外。3、周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。4、转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。5、当a为不同的数
1.如何有效掌握高中数学三角函数?
数学高考必考知识点总结有:
1、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项。
2、复合函数奇偶性:内偶则偶,内奇同外。
3、周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
4、转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。
5、当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0。
如何有效掌握高中数学三角函数?
已经进入高二上学期的同学们,在我们顺利度过高中的适应期,积极参与学校社团活动,逐步形成了自我学习模式,初步拟定人生规划后,要将自我的精力集中到学习上,应将自己的学业做到一个高度的时候了。我高二频道为你整理了《 高二数学 三角函数知识点》希望可以帮到你!
高三数学 三角函数专题知识点
锐角三角函数定义
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边;sinA=a/c
余弦(cos)等于邻边比斜边;cosA=b/c
正切(tan)等于对边比邻边;tanA=a/b
余切(cot)等于邻边比对边;cotA=b/a
正割(sec)等于斜边比邻边;secA=c/b
余割(csc)等于斜边比对边。cscA=c/a
互余角的三角函数间的关系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
积的关系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
锐角三角函数公式
两角和与差的三角函数:
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cosAsinB?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
三角和的三角函数:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
辅助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
推导公式:
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
其他:
sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
高三数学三角函数专题知识点
函数名正弦余弦正切余切正割余割
在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有
正弦函数sinθ=y/r
余弦函数cosθ=x/r
正切函数tanθ=y/x
余切函数cotθ=x/y
正割函数secθ=r/x
余割函数cscθ=r/y
正弦(sin):角α的对边比上斜边
余弦(cos):角α的邻边比上斜边
正切(tan):角α的对边比上邻边
余切(cot):角α的邻边比上对边
正割(sec):角α的斜边比上邻边
余割(csc):角α的斜边比上对边
三角函数万能公式
万能公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
证:
A+B=π-C
tan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得证
同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
万能公式为:
设tan(A/2)=t
sinA=2t/(1+t^2)(A≠2kπ+π,k∈Z)
tanA=2t/(1-t^2)(A≠2kπ+π,k∈Z)
cosA=(1-t^2)/(1+t^2)(A≠2kπ+π,且A≠kπ+(π/2)k∈Z)
就是说sinA.tanA.cosA都可以用tan(A/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.
高三数学三角函数专题知识点
三角函数关系
倒数关系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的关系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscαcα
平方关系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函数关系六角形记忆法
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
倒数关系
对角线上两个函数互为倒数;
商数关系
六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。
平方关系
在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
两角和差公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
二倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/(1-tan^2(α)
高三数学三角函数专题知识点相关 文章 :
★ 高考数学三角函数重点考点归纳
★ 高考数学三角函数知识点总结
★ 高三数学解三角函数方法总结
★ 高三文科数学三角函数知识点归纳
★ 2017高考数学三角函数知识点总结
★ 高中数学必修一三角函数知识点总结
★ 高中必修4数学三角函数知识点归纳
★ 高三数学专题复习知识点
★ 高中三角函数知识点归纳
★ 高考数学常用三角函数公式总结
三角函数一直是高考中的重要考点,让很多同学头疼不已,今天小编来和大家分析一下三角函数部分,帮助大家答疑解惑。
首先我们来看一下,三角函数部分都有哪些重要考点,也可以说,同学们需要掌握哪些重要知识点。
角的概念的推广;弧度制;任意角的三角函数;单位圆中的三角函数线;同角三角函数的基本关系式;正弦、余弦的诱导公式;两角和与差的正弦、余弦、正切;二倍角的正弦、余弦、正切;正弦函数、余弦函数的图像和性质;周期函数;函数y=Asin(ωx+φ)的图像;正切函数的图像和性质;已知三角函数值求角;正弦定理;余弦定理;斜三角形接法。
下面我们来说说, 那么到底为什么很多同学觉得三角函数比较难呢?主要有以下三点原因:
1、三角函数公式繁多,记不住,并且使用时亦易混用或乱用。
2、函数图像变换时,混淆周期变换和平移变换的顺序对平移量的影响。
3、解三角恒等变换问题时,如何从角的差异和相互关系及函数名称的差异等,选择和使用公式进行求解。
对于三角函数这一部分的内容,我建议把它拆成两个模块,几何部分包括各种恒等变换公式,以及后续的解三角形,代数部分则主要是三角函数的图像和性质等。在几何这一部分,我总结了一些高考一定会用到的结论和公式,这些是一定要熟练使用的。
三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想。
先给大家分享到这里,如果需要的话,还可以给大家整理一些经典习题,到时候看看同学们的反馈效果如何~