您现在的位置是: 首页 > 教育研究 教育研究
高考函数知识点和题型整理,函数高考常见题型
tamoadmin 2024-05-16 人已围观
简介1.高一数学函数题型及解题技巧有哪些?二、函数 一、映射与函数: (1)映射的概念: (2)一一映射:(3)函数的概念: 如:若 , ;问: 到 的映射有 个, 到 的映射有 个; 到 的函数有 个,若 ,则 到 的一一映射有 个。 函数 的图象与直线 交点的个数为 个。 二、函数的三要素: , , 。 相同函数的判断方法:① ;② (两点必须同时具备) (1)函数解析式的求法: ①定义法(拼凑)
1.高一数学函数题型及解题技巧有哪些?
二、函数
一、映射与函数:
(1)映射的概念: (2)一一映射:(3)函数的概念:
如:若 , ;问: 到 的映射有 个, 到 的映射有 个; 到 的函数有 个,若 ,则 到 的一一映射有 个。
函数 的图象与直线 交点的个数为 个。
二、函数的三要素: , , 。
相同函数的判断方法:① ;② (两点必须同时具备)
(1)函数解析式的求法:
①定义法(拼凑):②换元法:③待定系数法:④赋值法:
(2)函数定义域的求法:
① ,则 ; ② 则 ;
③ ,则 ; ④如: ,则 ;
⑤含参问题的定义域要分类讨论;
如:已知函数 的定义域是 ,求 的定义域。
⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。如:已知扇形的周长为20,半径为 ,扇形面积为 ,则 ;定义域为 。
(3)函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;
②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
求下列函数的值域:① (2种方法);
② (2种方法);③ (2种方法);
三、函数的性质:
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。
判别方法:定义法, 图像法 ,复合函数法
应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式。
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数
五、反函数:
(1)定义:
(2)函数存在反函数的条件: ;
(3)互为反函数的定义域与值域的关系: ;
(4)求反函数的步骤:①将 看成关于 的方程,解出 ,若有两解,要注意解的选择;②将 互换,得 ;③写出反函数的定义域(即 的值域)。
(5)互为反函数的图象间的关系: ;
(6)原函数与反函数具有相同的单调性;
(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。
如:求下列函数的反函数: ; ;
七、常用的初等函数:
(1)一元一次函数: ,当 时,是增函数;当 时,是减函数;
(2)一元二次函数:
一般式: ;对称轴方程是 ;顶点为 ;
两点式: ;对称轴方程是 ;与 轴的交点为 ;
顶点式: ;对称轴方程是 ;顶点为 ;
①一元二次函数的单调性:
当 时: 为增函数; 为减函数;当 时: 为增函数; 为减函数;
②二次函数求最值问题:首先要采用配方法,化为 的形式,
Ⅰ、若顶点的横坐标在给定的区间上,则
时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得;
时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得;
Ⅱ、若顶点的横坐标不在给定的区间上,则
时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得;
时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得;
有三个类型题型:
(1)顶点固定,区间也固定。如:
(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。
(3)顶点固定,区间变动,这时要讨论区间中的参数.
③二次方程实数根的分布问题: 设实系数一元二次方程 的两根为 ;则:
根的情况
等价命题 在区间 上有两根 在区间 上有两根 在区间 或 上有一根
充要条件
注意:若在闭区间 讨论方程 有实数解的情况,可先利用在开区间 上实根分布的情况,得出结果,在令 和 检查端点的情况。
(3)反比例函数:
(4)指数函数:
指数运算法则: ; ; 。
指数函数:y= (ao,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a1和0a1两种情况进行讨论,要能够画出函数图象的简图。
(5)对数函数:
指数运算法则: ; ; ;
对数函数:y= (ao,a≠1) 图象恒过点(1,0),单调性与a的值有关,在解题中,往往要对a分a1和0a1两种情况进行讨论,要能够画出函数图象的简图。
注意:(1) 与 的图象关系是 ;
(2)比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较。
(3)已知函数 的定义域为 ,求 的取值范围。
已知函数 的值域为 ,求 的取值范围。
六、 的图象:
定义域: ;值域: ; 奇偶性: ; 单调性: 是增函数; 是减函数。
七、补充内容:
抽象函数的性质所对应的一些具体特殊函数模型:
① 正比例函数
② ; ;
③ ; ;
④ ;
高一数学函数题型及解题技巧有哪些?
扬帆知道快乐解答:(1).正比例函数y=(2m^2-7m-9)x^(m^2-9m+19)的图像的倾斜角为锐角,则实数m=;(2).函数y=4x^2-mx+5在[2,+∞)上是增函数 则f(-1)的取值范围是;(3).函数y=cos2θ-2sinθ的最大值为M,最小值为m 则M-m= ;(4).函数y=1/(x^2-2x-8)的递减区间是
答案:1.倾斜角为锐角,那么斜率k<12m^2-7m-9<1 ① m^2-9m+19=1 ② ①得:m>4.589 ②m<-1.089得:m=6,m=3所以m的值是6 2.函数y=4x^2-mx+5在[2,+∞)上是增函数所以当x取2的时候,为顶点,函数顶点的坐标为(m/8,(80-m^2)/16)所以m/8=2,m=16y=4x^2-16x+5f(-1)=4+16+5=253.cos2θ-2sinθ=1-2sinθ^2-2sinθ=1-2sinθ(sinθ+1)M=1,m=-3M-m=44.y=1/(x^2-2x-8)=1/(x-4)(x-2)分母越大,分数越小。所以x<-2或x>4.
高中数学合集百度网盘下载
链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ
?pwd=1234提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。