您现在的位置是: 首页 > 教育研究 教育研究

高考数学湖南卷,高考数学湖南卷难度

tamoadmin 2024-06-29 人已围观

简介1.2023高考湖南数学难不难2.2010湖南高考文科数学试题3.2020年湖南高考数学难度分析4.湖南高考数学难吗20235.湖南23年高考数学难度大吗湖南高考数学2023总体来说不难。湖南高考数学试卷总体来说不难,今年试题易中难的比例有所调整,如果说去年是5:3:2的话,那么今年试题易中难的比例约为4:3:3,基础试题的分值约有60分,单选题的前6题,多选题的前两题,填空题的14题、解答题的前

1.2023高考湖南数学难不难

2.2010湖南高考文科数学试题

3.2020年湖南高考数学难度分析

4.湖南高考数学难吗2023

5.湖南23年高考数学难度大吗

高考数学湖南卷,高考数学湖南卷难度

湖南高考数学2023总体来说不难。

湖南高考数学试卷总体来说不难,今年试题易中难的比例有所调整,如果说去年是5:3:2的话,那么今年试题易中难的比例约为4:3:3,基础试题的分值约有60分,单选题的前6题,多选题的前两题,填空题的14题、解答题的前4题的第问均可视为基础题。

2023湖南高考数学试卷难度单单从试卷的试题本身来说,这个和每个人的知识点掌握程度和擅长的题目类型有关系,还和个人的临场发挥有关联,高考考生现场状态非常重要。普通高等学校招生全国统一考试,简称“高考”,是合格的高中毕业生或具有同等学历的考生参加的选拔性考试。

普通高等学校招生全国统一考试。教育部要求各省(区、市)考试科目名称与全国统考科目名称相同的必须与全国统考时间安排一致。参加考试的对象一般是全日制普通高中毕业生和具有同等学历的中华人民共和国公民。

招生分理工农医(含体育)、文史(含外语和艺术)两大类。普通高等学校根据考生成绩,按照招生章程计划和扩招,德智体美劳全面衡量,择优录取。2015年,高考逐步取消体育特长生、奥林匹克竞赛等6项加分项目。

高考的意义:

1、通过高考可以考上理想大学和喜欢的专业,为今后找工作就业奠定坚实基础,这是高考最大的意义。通过高考这一过程,能够获得未来找工作就业的基本能力。如果不参加高考,不读大学,很有可能今后无法找到理想的工作。

2、通过高考能够检验自己以往的学习成效,为今后的学习发展打下基础,这也是高考的直接意义所在。通过高考的检验,也是今后学习的基本前提。从某种意义上来讲,现在各大高校他们所开设的专业已经十分细,社会分工也非常细。

3、高考是包括绝大多数人在内,通向成功彼岸的唯一途径,也是穷苦人家走上辉煌腾达道路的唯一道路,所以对于大多数人来说,高考的意义就在于决定了今后的人生发展方向。

2023高考湖南数学难不难

湖南高考数学用的是全国一卷,也就是新课标Ⅰ卷,也叫全国乙卷。

湖南高考考全国新高考1卷考试,满分750分。考试科目有语文、数学、外语、选择性考试科目为思想政治、历史、地理、物理、化学、生物6门,考生须从历史、物理2门首选科目中选择1门,再从思想政治、地理、化学、生物4门,再选科目中选择2门参加考试。

其实在2000年以前,我国高考一直实行的都是全国使用同一张高考试卷,但是在2000年之后,进行了教育改革,全国就开始实施“统一高考,分省命题”的形式了。虽然说近几年有很多声音建议高考再次走向全国一张卷,统一出题,统一高考。

但是由于各地的高中教材版本不一样,相应的教学内容和教学要求也不相同,所以短时间内很难实现。

高考简介:

普通高等学校招生全国统一考试,简称“高考”,是合格的高中毕业生或具有同等学力的考生参加的选拔性考试。普通高等学校招生全国统一考试,是为普通高等学校招生设置的全国性统一考试,每年6月7日至10日实施。

参加考试的对象是全日制普通高中毕业生和具有同等学历的中华人民共和国公民,招生分理工农医(含体育)、文史(含外语和艺术)两大类。普通高等学校根据考生成绩,按照招生章程和计划,德智体美劳全面衡量,择优录取。

普通高等学校招生全国统一考试由国家主管部门授权的单位或实行自主命题的省级教育考试院命制。

2010湖南高考文科数学试题

2023年湖南高考数学试卷难度适中,没有出现特别偏难怪的题目,但也需要考生具备扎实的基础和良好的应试能力才能取得好成绩。

高考数学难点解析:

高考数学难点主要在于考查重点突出,覆盖面广。在高考数学中,函数、数列、三角、概率、几何等重点知识是考查的核心,占据了较大的分值比例。同时,高考数学试卷中也会涉及多个知识点的综合运用,对于考生的综合能力和数学思维要求较高。

高考数学不仅仅考查考生的基础知识,还注重考查数学思想的应用。例如,数形结合、分类讨论、化归与转化等思想都是高考数学中常用的数学思想,对于考生的思维能力和解决问题的能力要求较高。

对于创新能力和应用能力的考查也会成为很多考生的噩梦。高考数学中会涌现出一些创新性题目,需要考生具备创新思维和一定的应用能力。例如,一些与实际生活相关的应用题,需要考生具备较强的建模能力和解决实际问题的能力。

湖南省高考难度分析:

高考人数多,竞争压力大。湖南省的高考人数一直居于全国前列,竞争压力非常大。这也导致了高考的难度相对较高,考生需要具备扎实的学科基础、良好的应试能力和优秀的竞争力才能在高考中脱颖而出。

题目难度较高。湖南省高考的题目相对较难,需要考生具备扎实的基础知识和灵活的思维方法。同时,题目中也会涉及一些创新性的题目,需要考生具备创新思维和解决问题的能力。

对综合能力要求较高。湖南省高考数学试卷中会涉及多个知识点的综合运用,对于考生的综合能力和数学思维要求较高。同时,也会考查考生的实际应用能力,需要考生具备较强的建模能力和解决实际问题的能力。

2020年湖南高考数学难度分析

2010年普通高等学校招生全国统一考试(湖南卷)数学(文史类)

_____班 姓名_________

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.复数 等于 ( )

A. B. C. -1+i D. -1-i

2. 下列命题中的假命题是 ( )

A. B. C. D.

3.某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是 ( )

A. B. C. D..

4.极坐标方程 和参数方程 (t为参数)所表示的图形分别是 ( )

A.直线、直线 B.直线、圆 C.圆、圆 D.圆、直线

5.设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线的焦点的距离是 ( )

A. 4 B. 6 C. 8 D. 12

6.若非零向量 、 满足 , ,则 与 的夹角为 ( )

A.300 B. 600 C. 1200 D. 1500

7.在 中,角 的所对的边长分别为 ,若 ,则 ( )

A.a>b B. a<b C. a=b D. a与b 的大小关系不能确定.

8. 函数 与 在同一直角坐标系中的图象可能是 ( )

二 填空题:本大题共7个小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上。

9 .已知集合A={1,2,3},B={2, m,4},A∩B={2,3},则m= .

10.已知一种材料的最佳入量在100g到200g之间.若用0.618法安排试验,则第一次试点的加入量可以是 g.

11.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为

12 . 图1是求实数x的绝对值的算法程序框图,则判断框可填

13.图2中的三个直角三角形是 一个体积为20cm3的几何体的三视图,则 .

14. 若不同两点P,Q的坐标分别为(a,b) ,(3-b,3-a),则线段PQ的垂直平分线l的斜率为_________,圆 关于直线l对称的圆的方程为_________________________.

15. 若规定 的子集 为E的第k个子集,其中 ,则 (1) 是E的第_______个子集;

(2) E的第211个子集是________________.

三 解答题:每小题共6小题,共75分,解答应写出文字说明.证明过程或演算步骤。

16.(本小题满分12分)已知函数 .

(Ⅰ)求函数 的最小正周期; (II)求函数 的最大值及 取最大值时x的集合。

高校 相关人数 抽取人数

A 18 x

B 36 2

C 54 y

17.(本小题满分12分)为了对某课题进行研究,用分层抽样的方法从三所高校A、B、C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)

(I)求x,y;

(II)若从高校B、C抽取的人中选2人作专题发言,求这2人都来自高校C的概率.

18.(本小题满分12分) 如图3所示,在长方体ABCD- 中,AB=AD=1, AA1=2, M是棱C 的中点.

(Ⅰ)求异面直线 M和 所成的角的正切值;

(Ⅱ)证明:平面ABM 平面A1B1M.

19.(本小题满分13分)为了考察冰川的融化状况,一支科考队在某冰川上相距8km的A,B两点各建一个考察基地.视冰川面为平面形,以过A,B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图4).考察范围为到A,B两点的距离之和不超过10km的区域。

(Ⅰ)求考察区域边界曲线的方程;

(Ⅱ)如图4所示,设线段P1P2是冰川的部分边界线(不考虑其他边界线),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍,问:经过多长时间,点A恰好在冰川边界线上?

20 (本小题满分13分) 给出下面的数表序列:

表1 表2 表3 …

1 1 3 1 3 5

4 4 8

12

其中表n(n=1,2,3, …)有n行,第1行的n个数是1,3,5,…,2n-1,从第二行起,每行中的每个数都等于它肩上的两数之和.

(Ⅰ)写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);

(Ⅱ)某个数表中最后一行都只有一个数,它们构成数列1,4,12,…,记此数列为{bn},求和:

.

21.(本小题满分13分)已知函数 , 其中 且

(Ⅰ)讨论函数 的单调性;

(Ⅱ)设函数 (e是自然对数的底数),是否存在a,使g(x)在[a,-a]上是减函数?若存在,求a的取值范围;若不存在,请说明理由.

2010年普通高等学校招生全国统一考试(湖南卷)

数学(文史类)参考答案

一、

题号 1 2 3 4 5 6 7 8

答案 A C A D B C A D

二、 9. 3 10. 161.8或138.2 11. 12.x>0或x>0? 或x≥0 或x≥0?

13. 4 14. -1 , x2+(y-1)2=1 15. 5;

三、16.解(Ⅰ) 因为

所以函数 的最小正周期

(II)由(Ⅰ)知,当 ,即 时, 取最大值 .

因此函数 取最大值时x的集合为

17解: (I)由题意可得 ,所以x=1,y=3

(II)记从高校B抽取的2人为b1,b2, 从高校C抽取的3人为c1,c2,c3,则从高校B、C抽取的5人中选2人作专题发言的基本事件有:

(b1,b2),(b1,c1), (b1,c2), (b1,c3), (b2,c1), (b2,c2), (b2,c3),( c1,c2), ( c1,c3), ( c2,c3)共10种.

设选中的2人都来自高校C的事件为X,则X包含的基本事件有( c1,c2), ( c1,c3), ( c2,c3)共3种.

因此 . 故选中的2人都来自高校C的概率为

18.解 Ⅰ)如图,因为 ,所以 异面

直线 M和 所成的角,因为 平面 ,

所以 ,而 =1, ,

故 .

即异面直线 M和 所成的角的正切值为

(Ⅱ)由 平面 ,BM 平面 ,得 BM ①

由(Ⅰ)知, , , ,所以 ,

从而BM B1M ② 又 , 再由① ②得BM 平面A1B1M,而BM 平面ABM,

因此平面ABM 平面A1B1M.

19. 解(Ⅰ)设边界曲线上点的坐标为P(x,y),则由|PA|+|PB|=10知,

点P在以A、B为焦点,长轴长为2a=10的椭圆上,此时短半轴

长 .所以考察区域边界曲线(如图)的方程

(Ⅱ)易知过点P1、P2的直线方程为4x-3y+47=0,

因此点A到直线P1P2的距离为

设经过n年,点A恰好在冰川边界线上,则利用等比数列求和公式可得

,解得 n=5. 即经过5年,点A恰好在冰川边界线上.

20. 解:(Ⅰ)表4为 1 3 5 7

4 8 12

12 20

32

它的第1,2,3,4行中的数的平均数分别为4,8,16,32. 它们构成首项为4,公比为2的等比数列.

将结这一论推广到表n(n≥3),即

表n各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.

(Ⅱ)表n第1行是1,3,5,…,2n-1,其平均数是

由(Ⅰ)知,它的各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列(从而它的第k行中的数的平均数是 ),于是表n中最后一行的唯一一个数为 .因此

(k=1,2,3, …,n),故

21. (Ⅰ) 的定义域为 ,

(1)若-1<a<0,则当0<x<-a时, ;当-a <x<1时, ;当x>1时, .故 分别在 上单调递增,在 上单调递减.

(2)若a<-1,仿(1)可得 分别在 上单调递增,在 上单调递减.

(Ⅱ)存在a,使g(x)在[a,-a]上是减函数.

事实上,设 ,则

,再设 ,则当g(x)在[a,-a]上单调递减时,h(x)必在[a,0]上单调递,所以 ,由于 ,因此 ,而 ,所以 ,此时,显然有g(x)在[a,-a]上为减函数,当且仅当 在[1,-a]上为减函数,h(x)在[a,1上为减函数,且 ,由(Ⅰ)知,当a<-2时, 在 上为减函数 ①

又 ②

不难知道,

因 ,令 ,则x=a或x=-2,而

于是 (1)当a<-2时,若a <x<-2,则 ,若-2 <x<1,则 ,因而 分别在 上单调递增,在 上单调递减;

(2)当a=-2时, , 在 上单调递减.

综合(1)(2)知,当 时, 在 上的最大值为 ,所以, ③

又对 ,只有当a=-2时在x=-2取得,亦即 只有当a=-2时在x=-2取得.

因此,当 时,h(x)在[a,1上为减函数,从而由①,②,③知

综上所述,存在a,使g(x)在[a,-a]上是减函数,且a的取值范围为 .

湖南高考数学难吗2023

通过了解,很多小伙伴都对湖南2020年高考数学试卷的难度感兴趣,为此,我专门准备了高考数学难度分析的相关内容如下,一起来看吧!

2020年湖南高考数学难度

数学试题贯彻德智体美劳全面发展教育方针,坚持素养导向、能力为重的命题原则,体现了高考数学的科学选拔和育人导向作用。

全国Ⅰ卷理科第12题不仅考查考生运用所学知识分析、解决问题的能力,同时也考查学生的观察能力、运算能力、推理判断能力与灵活运用知识的综合能力。全国Ⅰ卷文科第17题也通过数学模型的形式,考查学生整理和分析信息的能力。全国Ⅰ卷理科第21题考查利用导数判断函数单调性的方法、导数公式和导数运算法则,综合考查考生的逻辑推理能力、运算求解能力、推理论证能力、分类与整合的能力以及数学语言表达能力。

以上点评及相关分析来源:中国教育在线,仅供参考,如若侵权请联系2855046843@qq.com。

湖南23年高考数学难度大吗

2023年湖南省高考数学试题总体来说不难。

1、2023湖南有考生表示难于不难。

感觉湖南今年数学难度不大,前面选择都不是很难,基本都是平日练习的常规题型,有个别有难度的题目,但是只要仔细分析也能逐渐找出解题思路。试题的阅读量和计算量都不是很大,考察数列的大题和最后一道关于导数的大题难度比较大。

2、2023湖南高考数学试卷的难度解析。

湖南高考数学试卷总体来说不难,今年试题易中难的比例有所调整,如果说去年是5:3:2的话,那么今年试题易中难的比例约为4:3:3,基础试题的分值约有60分。单选题的前6题,多选题的前两题,填空题的14题、解答题的前4题的第一问均可视为基础题。

3、高考数学会有一定难度。

数学试卷整体偏难是有一定原因的。正如有的人所说,数学作为基础学科,是我们国家战略发展的重要所需。是未来培养高科技人才的基础,高考一定是要把真正的人才给筛选出来的所以,数学需要有一定的难度。

高考的注意事项:

1、准备工作。

最重要的是做好最后的准备工作,保持充足的睡眠、饮食、放松的状态,减轻紧张情绪,以保证充分的精力和状态发挥自己最佳的水平。

2、注意考试时间和地点。

确保提前知道考试时间和地点,并提前到达考场。在考试当天,要留出足够的时间,避免交通堵塞等问题造成影响。

3、注意考场规则。

考场规则要了解清楚,按照规定摆放好物品,不随手乱丢垃圾。在考试过程中,不要交头接耳并且不要抄袭和作弊。

4、注意时间管理。

高考时间紧张,所以严格按照考试时间规定答题,不要浪费时间。同时,在考试时间剩余20分钟前要留一定的时间检查试卷,并及时修改或标出不确定的题目。

湖南23年高考数学难度不大。

有人觉得难,有人觉得简单,试卷难不难其实要看你的知识的把握情况以及临场发挥情况。有考生表示:"我感觉今年数学难度不大,前面选择都不是很难,基本都是平日练习的常规题型,有个别有难度的题目,但是只要仔细分析也能逐渐找出解题思路。

试题的阅读量和计算量都不是很大,考察数列的大题和最后一道关于导数的大题难度比较大。"我平时做数学卷子经常答不完,但这次我在考试打铃结束前基本都答完了,感觉心情还是挺轻松的。数学试题整体难度还可以,但也有难的地方来拉开梯度。

湖南高考使用的试卷

2023年湖南省高考使用的是“全国1卷”又叫作“新高考一卷”。新高考一卷的统考科目有三门,分别是:语文、数学、外语(英、俄、日、法、德中任选一门);

2023年湖南高考选考科目又叫作“高中学业水平选考科目”,包含了:物理、历史、思想政治、地理、化学、生物学;湖南考生们需要在物理和历史中任选一门、并在思想政治、地理、化学、生物学这四门科目中任选两门。

2023年湖南高考的难度将比往年可能会简单一些。因为从近十年高考试题难度来看,整体难度呈下降趋势。但是随着难度系数上升,高考录取分数线势必下降;与此相反,高考录取分数线必然会上升,因此湖南2023高考的难度应在2022以内保持稳定,难度系数与去年基本持平。

2023年湖南物理类本科批预计的录取分数线为415分;历史类本科批预计的录取分数线为450分;2023年湖南物理类特殊类型招生控制线的录取分数线预计为470分;历史类特殊类型招生控制线的录取分数线预计为500分;2023年湖南物理类专科批的录取分数线预计为200分;历史类专科批的录取分数线预计为200分。

文章标签: # 高考 # 数学 # 湖南