您现在的位置是: 首页 > 教育研究 教育研究

高考文科数学必考知识,文科数学高考知识点

tamoadmin 2024-06-16 人已围观

简介1.高考时文科的数学主要都考哪些内容2.高中数学公式大全 高考文科必背数学公式整理3.湖南高考数学知识点总结4.高考文科数学考什么?5.文科高考数学必背公式6.江苏高考数学文科范围7.高考文科数学的基础分有哪些考点?文科数学一、知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列 1 和系列 4 中的数学概念、性质、法则、公式、公理、定理以及由其

1.高考时文科的数学主要都考哪些内容

2.高中数学公式大全 高考文科必背数学公式整理

3.湖南高考数学知识点总结

4.高考文科数学考什么?

5.文科高考数学必背公式

6.江苏高考数学文科范围

7.高考文科数学的基础分有哪些考点?

高考文科数学必考知识,文科数学高考知识点

文科数学

一、知识要求

知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列 1 和系列 4 中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.

各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.

对知识的要求依次是了解、理解、掌握三个层次.

1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.

这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.

2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力.

这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用

等.

3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.

这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.

二、能力要求

能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.

1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.

空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.

2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.

抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.

3.推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.

中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.

4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.

运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.

5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.

数据处理能力主要是指针对研究对象的特殊性,选择合理的收集数据的方法,根据问题的具体情况,选择合适的统计方法整理数据,并构建模型对数据进行分析、推断,获得结论.

6.应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.

7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.

创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.

三、个性品质要求

个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.

要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.

四、考查要求

数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.

1.对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度.

2.对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想方法的掌握程度.

3.对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.

对能力的考查要全面,强调综合性、应用性,并要切合考生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力.

4.对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.

5.对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容,体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.

数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和应用性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.

Ⅱ.考试范围与要求

本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系

列 1 的内容;选考内容为《课程标准》的选修系列 4 的“坐标系与参数方程”、“不等式选讲”等 2 个专题.

必考内容

(一) 集合

1.集合的含义与表示

(1)了解集合的含义、元素与集合的属于关系.

(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. 2.集合间的基本关系

(1)理解集合之间包含与相等的含义,能识别给定集合的子集.

(2)在具体情境中,了解全集与空集的含义.

3.集合的基本运算

(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.

(3)能使用韦恩(Venn)图表达集合的关系及运算.

(二) 函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)

1.函数

(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)

表示函数.

(3)了解简单的分段函数,并能简单应用.

(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.

(5)会运用函数图像理解和研究函数的性质.

2.指数函数

(1)了解指数函数模型的实际背景.

(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.

(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.

(4)知道指数函数是一类重要的函数模型.

高考时文科的数学主要都考哪些内容

高三文科生在复习数学科目时,首先需要掌握数学公式。为了帮助高考考生掌握数学公式,下面我为高三文科生整理数学公式,希望对大家有所帮助!

高三文科数学公式

 一、对数函数

 log.a(MN)=logaM+logN

 loga(M/N)=logaM-logaN

 logaM^n=nlogaM(n=R)

 logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)

 二、简单几何体的面积与体积

 S直棱柱侧=c*h(底面周长乘以高)

 S正棱椎侧=1/2*c*h?(底面的周长和斜高的一半)

 设正棱台上、下底面的周长分别为c?,c,斜高为h?,S=1/2*(c+c?)*h

 S圆柱侧=c*l

 S圆台侧=1/2*(c+c?)*l=兀*(r+r?)*l

 S圆锥侧=1/2*c*l=兀*r*l

 S球=4*兀*R^3

 V柱体=S*h

 V锥体=(1/3)*S*h

 V球=(4/3)*兀*R^3

 三、两直线的位置关系及距离公式

 (1)数轴上两点间的距离公式|AB|=|x2-x1|

 (2) 平面上两点A(x1,y1),(x2,y2)间的距离公式

 |AB|=sqr[(x2-x1)^2+(y2-y1)^2]

 (3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式 d=|Ax0+By0+C|/sqr

 (A^2+B^2)

 (4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-

 C2|/sqr(A^2+B^2)

 同角三角函数的基本关系及诱导公式

 sin(2*k*兀+a)=sin(a)

 cos(2*k*兀+a)=cosa

 tan(2*兀+a)=tana

 sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana

 sin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tana

 sin(兀+a)=-sina

 sin(兀-a)=sina

 cos(兀+a)=-cosa

 cos(兀-a)=-cosa

 tan(兀+a)=tana

 四、二倍角公式及其变形使用

 1、二倍角公式

 sin2a=2*sina*cosa

 cos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2

 tan2a=(2*tana)/[1-(tana)^2]

 2、二倍角公式的变形

 (cosa)^2=(1+cos2a)/2

 (sina)^2=(1-cos2a)/2

 tan(a/2)=sina/(1+cosa)=(1-cosa)/sina

 五、正弦定理和余弦定理

 正弦定理:

 a/sinA=b/sinB=c/sinC

 余弦定理:

 a^2=b^2+c^2-2bccosA

 b^2=a^2+c^2-2accosB

 c^2=a^2+b^2-2abcosC

 cosA=(b^2+c^2-a^2)/2bc

 cosB=(a^2+c^2-b^2)/2ac

 cosC=(a^2+b^2-c^2)/2ab

 tan(兀-a)=-tana

 sin(兀/2+a)=cosa

 sin(兀/2-a)=cosa

 cos(兀/2+a)=-sina

 cos(兀/2-a)=sina

 tan(兀/2+a)=-cota

 tan(兀/2-a)=cota

 (sina)^2+(cosa)^2=1

 sina/cosa=tana

 两角和与差的余弦公式

 cos(a-b)=cosa*cosb+sina*sinb

 cos(a-b)=cosa*cosb-sina*sinb

 两角和与差的正弦公式

 sin(a+b)=sina*cosb+cosa*sinb

 sin(a-b)=sina*cosb-cosa*sinb

 两角和与差的正切公式

 tan(a+b)=(tana+tanb)/(1-tana*tanb)

 tan(a-b)=(tana-tanb)/(1+tana*tanb)

高中数学知识点速记口诀

 1.《集合与函数》

 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

 指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

 函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

 两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

 奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

 2.《三角函数》

 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

 顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,

 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

 将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

 余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

 逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

 万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

 利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

 3.《不等式》

 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

 高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

 证不等式的 方法 ,实数性质威力大。求差与0比大小,作商和1争高下。

 直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

 还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

 4.《数列》

 等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。

 数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,

 取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:

 一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:

 首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

 5.《复数》

 虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。

 对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。

 箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。

 代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。

 一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。

 利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,

 减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

 三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。

 辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,

 两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。

 6.《排列、组合、二项式定理》

 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。

 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。

 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

 不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。

 关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。

 7.《立体几何》

 点线面三位一体,柱锥 台球 为代表。距离都从点出发,角度皆为线线成。

 垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

 方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

 立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

 异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

 8.《平面解析几何》

 有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

 笛卡尔的观点对,点和有序实数对,两者一一来对应,开创几何新途径。

 两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

 三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

 四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

 解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

高三文科 数学 学习方法

 一:加深理解

 对数学课本里的概念要重新的认识,进一步加深对公式,定理的理解和掌握,认真看书,多练习,全面掌握,结合所有资料,提高解题的能力和更深知识的理解。

 二:认真做笔记

 上课时,一定要认真听,做笔记。听课不只是要听而已,还在积极的思考老师提出的问题,想想如何解决这个问题,应该要用什么方法,什么公式等等。老师上课时讲的,都会有一些的解题方法和思路,还有平时都会出错的问题,如何去解决,判断。所以上课做好笔记是必须的。

 三:反复练习

高中数学公式大全 高考文科必背数学公式整理

高考时文科的数学主要考试内容如下:

1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次是函数图象。

2.面对含有参数的初等函数来说,在研究的时候应该抓住参数有没有影响到函数的不变的性质。如所过的定点,二次函数的对称轴或是?; 如果产生了影响,应考虑分类讨论。

3.填空中出现不等式的题目(求最值、范围、比较大小等),优选特殊值法;

4.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

5.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

6.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式问题;

7.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道

第3/4页

曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);

8.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可(多观察图形,注意图形中的垂直、中点等隐含条件);个别题目考虑圆锥曲线的第二定义。

9.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

10、向量问题两条主线:转化为基底和建系,当题目中有明显的对称、垂直关系时,优先选择建系。

11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;

12.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

12.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知(即有平方关系),可使用三角换元来完成;

13.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;

14.与图象平移有关的,注意口诀“左加右减,上加下减”只用于函数

15.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,二是中点在对称轴上。

湖南高考数学知识点总结

为了方便大家更好地去背诵和记忆数学公式,我为大家整理了高中重点数学公式,供参考!

高中重点数学公式大全

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h

正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s*h 圆柱体 V=pi*r2h

高中文科数学必背公式总结

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα (k∈Z)

cos(2kπ+α)=cosα (k∈Z)

tan(2kπ+α)=tanα (k∈Z)

cot(2kπ+α)=cotα (k∈Z)

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

公式七:两角和差公式

两角和与差的三角函数公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

公式八:二倍角公式

二倍角的正弦、余弦和正切公式(升幂缩角公式)

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/[1-tan^2(α)]

公式九:半角公式

半角的正弦、余弦和正切公式(降幂扩角公式)

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

公式十:万能公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

公式十一:三倍角公式

三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

提高高中数学成绩的方法有哪些

1.主动预习

预习是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。

抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

2.主动思考

很多同学在听课的过程中,只是简简单单的听,不能主动思考,这样遇到实际问题时,会无从下手,不知如何应用所学的知识去解答问题。

主要原因还是听课过程中不思考惹的祸。除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。

靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是方法!

3.善于总结规律

解答数学问题总的讲是有规律可循的。在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:

① 本题最重要的特点是什么?

② 解本题用了哪些基本知识与基本图形?

③ 本题你是怎样观察、联想、变换来实现转化的?

④ 解本题用了哪些数学思想、方法?

⑤ 解本题最关键的一步在那里?

⑥ 你做过与本题类似的题目吗?在解法、思路上有什么异同?

⑦ 本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下采用吗?

把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,孩子解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。

4.拓宽解题思路

数学解题不要局限于本题,而要做到举一反三、多思多想,解答完一个题目,要想想有没有其他更加简便的方法,这样能够帮助大家拓宽思路,这样在以后的做题过程中就会有更多的选择。

5.必须要有错题本

说到错题本不少同学都觉得自己的记忆力好,不需要错题本就能记住,这是一种“错觉”,每个人都有这种感觉,等到题目增多,学习内容加深,这时就会发现自己力不从心了。

错题本能够随时记录自己的知识短板,帮助强化知识体系,有助于提升学习效率。有很多学霸都是因为积极使用了错题本,而考取了高分。

高考文科数学考什么?

考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。下面是我为大家整理的高考数学知识点,希望对大家有所帮助!

高考文科数学考点总结

第一,函式与导数。主要考查 *** 运算、函式的有关概念定义域、值域、解析式、函式的极限、连续、导数。

第二,平面向量与三角函式、三角变换及其应用。这一部分是高考微博的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计。这部分和我们的生活联络比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

第七,解析几何。是高考的难点,运算量大,一般含引数。

 湖南高考文科数学考点一:直线方程

1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.

注:①当或时,直线垂直于轴,它的斜率不存在.

②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.

2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.

特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.

注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.

附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点0,的直线束.②当为定值,变化时,它们表示一组平行直线.

3. ⑴两条直线平行:

∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.

一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且

推论:如果两条直线的倾斜角为则∥.

⑵两条直线垂直:

两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. 即是垂直的充要条件

4. 直线的交角:

⑴直线到的角方向角;直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.

⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.

5. 过两直线的交点的直线系方程为引数,不包括在内

湖南高考文科数学考点二:轨迹方程

一、求动点的轨迹方程的基本步骤

⒈建立适当的座标系,设出动点M的座标;

⒉写出点M的 *** ;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、引数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的座标x,y表示相关点P的座标x0、y0,然后代入点P的座标x0,y0所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋引数法:当动点座标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做引数法。

⒌交轨法:将两动曲线方程中的引数消去,得到不含引数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

湖南高考文科数学考点三:导数

一、函式的单调性

在a,b内可导函式fx,f′x在a,b任意子区间内都不恒等于0.

f′x≥0?fx在a,b上为增函式.

f′x≤0?fx在a,b上为减函式.

二、函式的极值

1、函式的极小值:

函式y=fx在点x=a的函式值fa比它在点x=a附近其它点的函式值都小,f′a=0,而且在点x=a附近的左侧f′x<0,右侧f′x>0,则点a叫做函式y=fx的极小值点,fa叫做函式y=fx的极小值.

2、函式的极大值:

函式y=fx在点x=b的函式值fb比它在点x=b附近的其他点的函式值都大,f′b=0,而且在点x=b附近的左侧f′x>0,右侧f′x<0,则点b叫做函式y=fx的极大值点,fb叫做函式y=fx的极大值.

极小值点,极大值点统称为极值点,极大值和极小值统称为极值.

三、函式的最值

1、在闭区间[a,b]上连续的函式fx在[a,b]上必有最大值与最小值.

2、若函式fx在[a,b]上单调递增,则fa为函式的最小值,fb为函式的最大值;若函式fx在[a,b]上单调递减,则fa为函式的最大值,fb为函式的最小值.

四、求可导函式单调区间的一般步骤和方法

1、确定函式fx的定义域;

2、求f′x,令f′x=0,求出它在定义域内的一切实数根;

3、把函式fx的间断点即fx的无定义点的横座标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函式fx的定义区间分成若干个小区间;

4、确定f′x在各个开区间内的符号,根据f′x的符号判定函式fx在每个相应小开区间内的增减性.

湖南高考文科数学考点四:不等式

1理解不等式的性质及其证明。

导读

不等式的性质是不等式的理论支撑,其基础性质源于数的大小比较。要注意以下几点:

加强化归意识,把比较大小问题转化为实数的运算;

通过复习强化不等式“运算”的条件。如a>b、才c>d在什么条件下才能推出ac>bd;

强化函式的性质在大小比较中的重要作用,加强知识间的联络;

不等式的性质是解、证不等式的基础,对任意两实数a、b有a-b>0 a>b,a-b=0 a=b,a-b<0 a

一定要在理解的基础上记准、记熟不等式的性质,并注意解题中灵活、准确地加以应用;

对两个或两个以上不等式同加或同乘时一定要注意不等式是否同向且大于零;

对于含参问题的大小比较要注意分类讨论。

2掌握两个不扩充套件到三个正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。

导读

1、在证明不等式的各种方法中,作差比较法是一种最基本最重要的方法,它是利用不等式两边的差是正数还是负数来证明不等式,其应用非常广泛,一定要熟练掌握。

2、对于公式a+b≥ 2√ab,ab≤a+b/22要理解它们的作用和使用条件及内在联络,两个公式也体现了ab和a+b的转化关系。

3、在应用均值定理求最值时,要把握定理成立的三个条件就是“一正——各项均为正;二定——积或和为定值;三项等——等号能否取得”。若忽略了某个条件,就会出现错误。

3掌握分析法、综合法、比较法证明的简单不等式。

导读

1、在证明不等式的过程中,分析法和综合法是不能分离的,如果使用综合法证明不等式难以入手时,常用分析法探索证题途径,之后用综合法的形式写出它的证明过程。有时问题证明难度较大,常使用分析综合法,实现两头往中间靠以达到证明目的。

2、由于高考试题不会出现单一的不等式的证明题,常常与函式、数列、三角、方程综合在一起,所以在学习中,不等式的证明除常用的三种方法外,还有其他方法,比如比较大小。证明不等式的常用方法有:差、商比较法、函式性质法、分析综合法和放缩法。要能了解常见的放缩途径,如:利用增或舍、分式性质、函式单调性、有界性、基本不等式及绝对值不等式性质和数学归纳法等。有时要先对不等式作等价变形再进行证明,有时几种证明方法综合使用。

3、比较法有两种形式:一是作差,而是作商。用作差法证明不等式是证明不等式中最基本、最常用的方法。它的依据是不等式的基本性质。步骤是:作差商→变形→判断。变形的目的是为了判断,若是作差,就判断与0的大小关系,为了便于判断,往往把形式变为积或完全平方式。若是作商,两边为正,就判断与1的大小关系。

湖南高考文科数学考点五:几何

1棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

2棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

4圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

5圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

6圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

7球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 看过"湖南高考数学知识点 湖南高考文科数学考点 "的还:

文科高考数学必背公式

高考文科数学试卷和理科数学试卷是不一样的

相对理科数学卷来说,文科数学要简单很多。

文科数学考试范围包括必考内容和选考内容两部分。必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4 的“坐标系与参数方程”、“不等式选讲”等2个专题。

理科数学考试范围包括必考内容和选考内容两部分。必考内容为《课程标准》的必修内容和选修系列2的内容;选考内容为《课程标准》的选修系列4的 “坐标系与参数方程”、“不等式选讲”等2个专题。

报了文科,数学也是不能放弃的。物理化学生物可以稍微了解一下。

高考时,除了语文,英语文理科考生是一样考卷,数学和文综(理综)是不一样的。

扩展资料:

每个实行文理分科考试的省份,高考的时候文理数学试卷都是不同的(平时考试文理数学试卷也不同)。

先从考试范围来说,文科数学试卷考察范围没有理科数学试卷的考察范围大。就比如函数导数部分,文科只学基本函数求导,而理科还要学复合函数求导;立体几何部分文科只学空间坐标系,理科还要学空间角证明平行、垂直等位置关系等。

理科数学范围比文科广,试卷难度当然也比文科大。举个例子:文科数学试卷的压轴题理科生能做出来,但是理科数学试卷的压轴题理科生做不出来。

而且文理科数学数学试题的问题也不同,如果考察同一个知识点,文科试题会很直白的问,而理科数学的问题,得通过分析推理才能知道问的什么(夸张好理解,实际情况没有这么夸张的)。

江苏高考数学文科范围

一、高中数学诱导公式全集:

常用的诱导公式有以下几组:

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα (k∈Z)

cos(2kπ+α)=cosα (k∈Z)

tan(2kπ+α)=tanα (k∈Z)

cot(2kπ+α)=cotα (k∈Z)

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀

※规律总结※

上面这些诱导公式可以概括为:

对于π/2*k ±α(k∈Z)的三角函数值,

①当k是偶数时,得到α的同名函数值,即函数名不改变;

②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.

(奇变偶不变)

然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)

例如:

sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

所以sin(2π-α)=-sinα

上述的记忆口诀是:

奇变偶不变,符号看象限。

公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α

所在象限的原三角函数值的符号可记忆

水平诱导名不变;符号看象限。

各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.

这十二字口诀的意思就是说:

第一象限内任何一个角的四种三角函数值都是“+”;

第二象限内只有正弦是“+”,其余全部是“-”;

第三象限内切函数是“+”,弦函数是“-”;

第四象限内只有余弦是“+”,其余全部是“-”.

上述记忆口诀,一全正,二正弦,三内切,四余弦

还有一种按照函数类型分象限定正负:

函数类型 第一象限 第二象限 第三象限 第四象限

正弦 ...........+............+............—............—........

余弦 ...........+............—............—............+........

正切 ...........+............—............+............—........

余切 ...........+............—............+............—........

同角三角函数基本关系

同角三角函数的基本关系式

倒数关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的关系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系:

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

六角形记忆法:(参看或参考资料链接)

构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

(1)倒数关系:对角线上两个函数互为倒数;

(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。

(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式

两角和与差的三角函数公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

二倍角公式

二倍角的正弦、余弦和正切公式(升幂缩角公式)

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/[1-tan^2(α)]

半角公式

半角的正弦、余弦和正切公式(降幂扩角公式)

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

万能公式

万能公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

万能公式推导

附推导:

sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,

(因为cos^2(α)+sin^2(α)=1)

再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))

然后用α/2代替α即可。

同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

三倍角公式

三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

三倍角公式推导

附推导:

tan3α=sin3α/cos3α

=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

上下同除以cos^3(α),得:

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

=2sinαcos^2(α)+(1-2sin^2(α))sinα

=2sinα-2sin^3(α)+sinα-2sin^3(α)

=3sinα-4sin^3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

=(2cos^2(α)-1)cosα-2cosαsin^2(α)

=2cos^3(α)-cosα+(2cosα-2cos^3(α))

=4cos^3(α)-3cosα

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

三倍角公式联想记忆

★记忆方法:谐音、联想

正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))

余弦三倍角:4元3角 减 3元(减完之后还有“余”)

☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

★另外的记忆方法:

正弦三倍角: 山无司令 (谐音为 三无四立) 三指的是"3倍"sinα, 无指的是减号, 四指的是"4倍", 立指的是sinα立方

余弦三倍角: 司令无山 与上同理

和差化积公式

三角函数的和差化积公式

sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

积化和差公式

三角函数的积化和差公式

sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]

cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]

cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]

sinα ·sinβ=-0.5[cos(α+β)-cos(α-β)]

和差化积公式推导

附推导:

首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

所以,sina*cosb=(sin(a+b)+sin(a-b))/2

同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb

所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb

所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

这样,我们就得到了积化和差的四个公式:

sina*cosb=(sin(a+b)+sin(a-b))/2

cosa*sinb=(sin(a+b)-sin(a-b))/2

cosa*cosb=(cos(a+b)+cos(a-b))/2

sina*sinb=-(cos(a+b)-cos(a-b))/2

好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.

我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2

把a,b分别用x,y表示就可以得到和差化积的四个公式:

sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

高考文科数学的基础分有哪些考点?

2019年江苏高考文科数学考试大纲已公布,具体内容如下:

一、必考内容

(一)集合

1、集合的含义与表示;2、集合间的基本关系;3、集合的基本运算。

(二)函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)

1、函数;2、指数函数;3、对数函数;4、幂函数;5、函数与方程;6、函数模型及其应用。

(三)立体几何初步

1、空间几何体;2、点、直线、平面之间的位置关系。

(四)平面解析几何初步

1、直线与方程;2、圆与方程;3、空间直角坐标系。

(五)算法初步

1、算法的含义、程序框图;2、基本算法语句。

(六)统计

1、随机抽样;2、用样本估计总体;3、变量的相关性。

(七)概率

1、事件与概率;2、古典概型;3、随机数与几何概型。

(八)基本初等函数Ⅱ(三角函数)

1、任意角的概念、弧度制;2、三角函数。

(九)平面向量

1、平面向量的实际背景及基本概念;2、向量的线性运算;3、平面向量的基本定理及坐标表示;4、平面向量的数量积;5、向量的应用。

(十)三角恒等变换

1、和与差的三角函数公式;2、简单的三角恒等变换。

(十一)解三角形

1、正弦定理和余弦定理;2、应用。

(十二)数列

1、数列的概念和简单表示法;2、等差数列、等比数列。

(十三)不等式

1、不等关系;2、一元二次不等式;3、二元一次不等式组与简单线性规划问题;4、基本不等式。

(十四)常用逻辑用语

1、命题及其关系;2、简单的逻辑联结词;3、全称量词与存在量词。

(十五)圆锥曲线与方程

(十六)导数及其应用

1、导数概念及其几何意义;2、导数的运算;3、导数在研究函数中的应用;4、生活中的优化问题。

(十七)统计案例

1、独立性检验;2、回归分析。

(十八)推理与证明

1、合情推理与演绎推理;2、直接证明与间接证明。

(十九)数系的扩充与复数的引入

1、复数的概念;2、复数的四则运算。

(二十)框图

1、流程图;2、结构图。

二、选考内容

(一)坐标系与参数方程

1、坐标系;2、参数方程。

(二)不等式选讲

1、理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明不等式;

2、了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明;

3、会用参数配方法讨论柯西不等式的一般情形;

4、会用向量递归方法讨论排序不等式;

5、了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题;

6、会用数学归纳法证明伯努利不等式;

7、会用上述不等式证明一些简单问题、能够利用平均值不等式、柯西不等式求一些特定函数的极值;

8、了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法。

普通高等学校招生全国统一考试大纲是高考命题的规范性文件和标准。根据高考内容改革要求修订考试大纲,是保证考试科学公平、促进素质教育发展的一项重要工作。现将2019年江苏普通高等学校招生全国统一考试文科数学大纲予以公布。

第一,函数与导数

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用

这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计

这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析

主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

第七,解析几何

高考的难点,运算量大,一般含参数。

文章标签: # cos # sin # 公式