您现在的位置是: 首页 > 教育研究 教育研究

高中数学导数高考题目及答案,高中数学导数高考题

tamoadmin 2024-06-14 人已围观

简介1.高考数学导数题2.一道高考导数题3.高考数学一道关于导数一个步骤的问题4.数学导数问题5.高中导数的题型及解题技巧6.二次求导的用法与意义 最好找个例题 谢谢备战2010高考数学――压轴题跟踪演练系列二1. (本小题满分12分)已知常数a > 0, n为正整数,f n ( x ) = x n – ( x + a)n ( x > 0 )是关于x的函数.(1) 判定函数f n ( x

1.高考数学导数题

2.一道高考导数题

3.高考数学一道关于导数一个步骤的问题

4.数学导数问题

5.高中导数的题型及解题技巧

6.二次求导的用法与意义 最好找个例题 谢谢

高中数学导数高考题目及答案,高中数学导数高考题

备战2010高考数学――压轴题跟踪演练系列二

1. (本小题满分12分)

已知常数a > 0, n为正整数,f n ( x ) = x n – ( x + a)n ( x > 0 )是关于x的函数.

(1) 判定函数f n ( x )的单调性,并证明你的结论.

(2) 对任意n ? a , 证明f `n + 1 ( n + 1 ) < ( n + 1 )fn`(n)

解: (1) fn `( x ) = nx n – 1 – n ( x + a)n – 1 = n [x n – 1 – ( x + a)n – 1 ] ,

∵a > 0 , x > 0, ∴ fn `( x ) < 0 , ∴ f n ( x )在(0,+∞)单调递减. 4分

(2)由上知:当x > a>0时, fn ( x ) = xn – ( x + a)n是关于x的减函数,

∴ 当n ? a时, 有:(n + 1 )n– ( n + 1 + a)n ? n n – ( n + a)n. 2分

又 ∴f `n + 1 (x ) = ( n + 1 ) [xn –( x+ a )n ] ,

∴f `n + 1 ( n + 1 ) = ( n + 1 ) [(n + 1 )n –( n + 1 + a )n ] < ( n + 1 )[ nn – ( n + a)n] = ( n + 1 )[ nn – ( n + a )( n + a)n – 1 ] 2分

( n + 1 )fn`(n) = ( n + 1 )n[n n – 1 – ( n + a)n – 1 ] = ( n + 1 )[n n – n( n + a)n – 1 ], 2分

∵( n + a ) > n ,

∴f `n + 1 ( n + 1 ) < ( n + 1 )fn`(n) . 2分

2. (本小题满分12分)

已知:y = f (x) 定义域为[–1,1],且满足:f (–1) = f (1) = 0 ,对任意u ,v?[–1,1],都有|f (u) – f (v) | ≤ | u –v | .

(1) 判断函数p ( x ) = x2 – 1 是否满足题设条件?

(2) 判断函数g(x)= ,是否满足题设条件?

解: (1) 若u ,v ? [–1,1], |p(u) – p (v)| = | u2 – v2 |=| (u + v )(u – v) |,

取u = ?[–1,1],v = ?[–1,1],

则 |p (u) – p (v)| = | (u + v )(u – v) | = | u – v | > | u – v |,

所以p( x)不满足题设条件.

(2)分三种情况讨论:

10. 若u ,v ? [–1,0],则|g(u) – g (v)| = |(1+u) – (1 + v)|=|u – v |,满足题设条件;

20. 若u ,v ? [0,1], 则|g(u) – g(v)| = |(1 – u) – (1 – v)|= |v –u|,满足题设条件;

30. 若u?[–1,0],v?[0,1],则:

|g (u) –g(v)|=|(1 – u) – (1 + v)| = | –u – v| = |v + u | ≤| v – u| = | u –v|,满足题设条件;

40 若u?[0,1],v?[–1,0], 同理可证满足题设条件.

综合上述得g(x)满足条件.

3. (本小题满分14分)

已知点P ( t , y )在函数f ( x ) = (x ? –1)的图象上,且有t2 – c2at + 4c2 = 0 ( c ? 0 ).

(1) 求证:| ac | ? 4;

(2) 求证:在(–1,+∞)上f ( x )单调递增.

(3) (仅理科做)求证:f ( | a | ) + f ( | c | ) > 1.

证:(1) ∵ t?R, t ? –1,

∴ ⊿ = (–c2a)2 – 16c2 = c4a2 – 16c2 ? 0 ,

∵ c ? 0, ∴c2a2 ? 16 , ∴| ac | ? 4.

(2) 由 f ( x ) = 1 – ,

法1. 设–1 < x1 < x2, 则f (x2) – f ( x1) = 1– –1 + = .

∵ –1 < x1 < x2, ∴ x1 – x2 < 0, x1 + 1 > 0, x2 + 1 > 0 ,

∴f (x2) – f ( x1) < 0 , 即f (x2) < f ( x1) , ∴x ? 0时,f ( x )单调递增.

法2. 由f ` ( x ) = > 0 得x ? –1,

∴x > –1时,f ( x )单调递增.

(3)(仅理科做)∵f ( x )在x > –1时单调递增,| c | ? > 0 ,

∴f (| c | ) ? f ( ) = =

f ( | a | ) + f ( | c | ) = + > + =1.

即f ( | a | ) + f ( | c | ) > 1.

4.(本小题满分15分)

设定义在R上的函数 (其中 ∈R,i=0,1,2,3,4),当

x= -1时,f (x)取得极大值 ,并且函数y=f (x+1)的图象关于点(-1,0)对称.

(1) 求f (x)的表达式;

(2) 试在函数f (x)的图象上求两点,使这两点为切点的切线互相垂直,且切点的横坐标都在区间 上;

(3) 若 ,求证:

解:(1) …………………………5分

(2) 或 …………10分

(3)用导数求最值,可证得 ……15分

5.(本小题满分13分)

设M是椭圆 上的一点,P、Q、T分别为M关于y轴、原点、x轴的对称点,N为椭圆C上异于M的另一点,且MN⊥MQ,QN与PT的交点为E,当M沿椭圆C运动时,求动点E的轨迹方程.

解:设点的坐标

则 ……1分

………………………………………………………3分

由(1)-(2)可得 ………………………………6分

又MN⊥MQ, 所以

直线QN的方程为 ,又直线PT的方程为 ……10分

从而得 所以

代入(1)可得 此即为所求的轨迹方程.………………13分

6.(本小题满分12分)

过抛物线 上不同两点A、B分别作抛物线的切线相交于P点,

(1)求点P的轨迹方程;

(2)已知点F(0,1),是否存在实数 使得 ?若存在,求出 的值,若不存在,请说明理由.

解法(一):(1)设

由 得:

………………………………3分

直线PA的方程是: 即 ①

同理,直线PB的方程是: ②

由①②得:

∴点P的轨迹方程是 ……………………………………6分

(2)由(1)得:

…………………………10分

所以

故存在 =1使得 …………………………………………12分

解法(二):(1)∵直线PA、PB与抛物线相切,且

∴直线PA、PB的斜率均存在且不为0,且

设PA的直线方程是

由 得:

即 …………………………3分

即直线PA的方程是:

同理可得直线PB的方程是:

由 得:

故点P的轨迹方程是 ……………………………………6分

(2)由(1)得:

………………………………10分

故存在 =1使得 …………………………………………12分

7.(本小题满分14分)

设函数 在 上是增函数.

(1) 求正实数 的取值范围;

(2) 设 ,求证:

解:(1) 对 恒成立,

对 恒成立

又 为所求.…………………………4分

(2)取 , ,

一方面,由(1)知 在 上是增函数,

即 ……………………………………8分

另一方面,设函数

∴ 在 上是增函数且在 处连续,又

∴当 时,

∴ 即

综上所述, ………………………………………………14分

8.(本小题满分12分)

如图,直角坐标系 中,一直角三角形 , , 、 在 轴上且关于原点 对称, 在边 上, , 的周长为12.若一双曲线 以 、 为焦点,且经过 、 两点.

(1) 求双曲线 的方程;

(2) 若一过点 ( 为非零常数)的直线 与双曲线 相交于不同于双曲线顶点的两点 、 ,且 ,问在 轴上是否存在定点 ,使 ?若存在,求出所有这样定点 的坐标;若不存在,请说明理由.

解:(1) 设双曲线 的方程为 ,

则 .

由 ,得 ,即 .

∴ (3分)

解之得 ,∴ .

∴双曲线 的方程为 . (5分)

(2) 设在 轴上存在定点 ,使 .

设直线 的方程为 , .

由 ,得 .

即 ① (6分)

∵ ,

∴ .

即 . ② (8分)

把①代入②,得

③ (9分)

把 代入 并整理得

其中 且 ,即 且 .

. (10分)

代入③,得

化简得 .

当 时,上式恒成立.

因此,在 轴上存在定点 ,使 . (12分)

9.(本小题满分14分)

已知数列 各项均不为0,其前 项和为 ,且对任意 都有 ( 为大于1的常数),记 .

(1) 求 ;

(2) 试比较 与 的大小( );

(3) 求证: ,( ).

解:(1) ∵ , ①

∴ . ②

②-①,得

即 . (3分)

在①中令 ,可得 .

∴ 是首项为 ,公比为 的等比数列, . (4分)

(2) 由(1)可得 .

∴ , (5分)

而 ,且 ,

∴ , .

∴ ,( ). (8分)

(3) 由(2)知 , ,( ).

∴当 时, .

, (10分)

(当且仅当 时取等号).

另一方面,当 , 时,

∵ ,∴ .

∴ ,(当且仅当 时取等号).(13分)

∴ .(当且仅当 时取等号).

综上所述, ,( ).(14分)

高考数学导数题

你需要理解的是导数和函数增减性之间的关系。

当导数在某个区间内大于等于0时,则函数递增,小于等于0时,则函数递减。等于0时,则函数在该区间内为常值函数。对于你的问题,当a=-√6/2时,f′(x)=3x?+√6x+1/2 在实数域上都是大于等于0的,所以函数是递增的。你的数学老师说的没有错。

f′(x)=0时x=-√6/6是唯一的零点,此时x=-√6/6是函数f的平衡点,但即非极大值点,亦非极小值点。但f在实数域上仍然是递增函数。

一道高考导数题

对fx求导fx'=2x-4-a/x^2>=0在X>=1恒成立的问题既2x^3-4x^2-a>=0令Fx=2x^3-4x^2-a Fx'=6x^2-8x=0知在x>=1上x=4/3处 最小 所以只需F(4/3)>=0既知 选C 一般就这思路

高考数学一道关于导数一个步骤的问题

很简单啊,F′(X)G(X)<F(X)G′(X),就是说 F′(X)G(X)-F(X)G′(X)<0 不等式两边同时除以 g(X)的平方 ,再逆用复合函数导数公式,得到 F(X)/G(X) 的导数小于0 即F(X)/G(X)递减,又因为那个G(x)>0 , 所以F(x)>0 <=> F(x)/G(x)>0, 设T(x)=F(X)/G(X), 知道T(1)=0 ,且由于F(x)是奇函数,所以T(-1)=0, 又知道T(x)是递减的,故画个图知道范围应该是(-∞,1)∪(0,1)

这是很基础的一道题,我回答这个问题完全是为了让你帮我加分

数学导数问题

对C1来说,y'=2x+2在x1点的切线斜率是2x1+2

对C2来说,y'=-2x 在x2点的切线斜率是 -2x2

因是公切线,所以斜率相等,即

2x1+2=-2x2

移项就是你看到的结果: x1+x2=-1

高中导数的题型及解题技巧

导数的应用 说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分)1.设在[0,1]上函数f(x)的图象是连续的,且f′(x)>0,则下列关系一定成立的是A.f(0)<0 B.f(1)>0 C.f(1)>f(0) D.f(1)<f(0)分析:本题主要考查利用函数的导数来研究函数的性质.解:因为f′(x)>0,所以函数f(x)在区间[0,1]上是增函数.又函数f(x)的图象是连续的,所以f(1)>f(0).但f(0)、f(1)与0的大小是不确定的.答案:C2.函数y=xlnx在区间(0,1)上是A. 单调增函数 B. 单调减函数C.在(0, )上是减函数,在( ,1)上是增函数D.在(0, )上是增函数,在( ,1)上是减函数分析:本题主要考查利用求导方法判定函数在给定区间上的单调性.解:y′=lnx+1,当y′>0时,解得x> .又x∈(0,1),∴ <x<1时,函数y=xlnx为单调增函数.同理,由y′<0且x∈(0,1)得0<x< ,此时函数y=xlnx为单调减函数.故应选C.答案:C3.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如下图所示,则y=f(x)的图象最有可能是分析:本题主要考查函数的导数与图象结合处理问题.要求对导数的含义有深刻理解、应用的能力.解:函数的增减性由导数的符号反映出来.由导函数的图象可大略知道函数的图象.由导函数图象知:函数在(-∞,0)上递增,在(0,2)上递减,在(2,+∞)上递增;函数f(x)在x=0处取得极大值,在x=2处取得极小值.答案:C4.已知函数f(x)=3x3-5x+1,则f′(x)是A.奇函数 B.偶函数 C.非奇非偶函数 D.既奇又偶函数分析:本题考查导数函数的奇偶性.解题的关键是对函数求导,但求导不改变函数的定 义域.解:∵f(x)=3x3-5x+1,∴f′(x)=9x2-5(x∈R). ∵f′(-x)=f′(x),∴f′(x)是偶函数.答案:B5.若函数y=x3-3bx+3b在(0,1)内有极小值,则A.0<b<1 B.b<1 C.b>0 D.b< 分析:本题主要考查应用导数解决有关极值与参数的范围问题.解:对于可导函数而言,极值点是导数为零的点.因为函数在(0,1)内有极小值,所以极值点在(0,1)上.令y′=3x2-3b=0,得x2=b,显然b>0, ∴x=± .又∵x∈(0,1), ∴0< <1.∴0<b<1.答案:A6.函数y=x3+ 在(0,+∞)上的最小值为A.4 B.5 C.3 D.1分析:本题主要考查应用导数求函数的最值.解:y′=3x2- ,令y′=3x2- =0,即x2- =0,解得x=±1.由于x>0,所以x=1.在(0, +∞)上,由于只有一个极小值,所以它也是最小值,从而函数在(0,+∞)上的最小值为y=f(1)=4.答案:A7.若函数f(x)在[a,b]上连续,在(a,b)内可导,且x∈(a,b)时,f′(x)>0,又f(a)<0,则A.f(x)在[a,b]上单调递增,且f(b)>0B.f(x)在[a,b]上单调递增,且f(b)<0C.f(x)在[a,b]上单调递减,且f(b)<0D.f(x)在[a,b]上单调递增,但f(b)的符号无法判断分析:本题主要考查函数的导数与单调性的关系.解:若函数f(x)在(a,b)内可导,且x∈(a,b)时,f′(x)>0,则函数在[a,b]内为增函数.∵f(a)<0, ∴f(b)可正可负,也可为零,即f(b)的符号无法判断.答案:D8.已知y= sin2x+sinx+3,那么y′是A.仅有最小值的奇函数 B.既有最大值又有最小值的偶函数C.仅有最大值的偶函数 D.非奇非偶函数分析:本题主要考查导函数的性质.解:y′=( sin2x)′+(sinx)′= (cos2x)(2x)′+cosx=cos2x+cosx.不妨设f(x)=cos2x+cosx,∵f(-x)=cos(-2x)+cos(-x)=cos2x+cosx=f(x), ∴y′为偶函数.又由于y′=2cos2x-1+cosx=2cos2x+cosx-1,令t=cosx(-1≤t≤1),∴y′=2t2+t-1=2(t+ )2- . ∴y′max=2, y′min=- .故选B.答案:B9.函数y=ax3-x在(-∞,+∞)上是减函数,则A.a= B.a=1 C.a=2 D.a<0分析:本题考查常见函数的导数及其应用.可以采用解选择题的常用方法——验证法.解:由y′=3ax2-1,当a= 时,y′=x2-1,如果x>1,则y′>0与条件不符.同样可判断a=1,a=2时也不符合题意.当a<0时,y′=3ax2-1恒小于0,则原函数在(-∞,+∞)上是减函数.故选D.答案:D10.已知抛物线y2=2px(p>0)与一个定点M(p,p),则抛物线上与M点的距离最小的点为A.(0,0) B.( ,p) C.( ) D.( )分析:本题考查利用函数的导数求解函数的最值.首先建立关于距离的目标函数关系式,然后合理地选取变量,通过求导数的方法求与最值有关的问题.本题也可以用解析几何中数形结合法求解.解:设抛物线上的任意点(x,y)到点M的距离为d,则有d2=(p-x)2+(p-y)2=(p- )2+(p-y)2.∴(d2)′=2(p- )(- )+2(p-y)(-1)= -2p.令(d2)′y=0,即 -2p=0,解得y= p.这是函数在定义域内的唯一极值点,所以必是最值点.代入抛物线方程得 .所以点( )为所求的点.答案:D第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)11.函数y=sin2x的单调递减区间是__________.分析:本题考查导数在三角问题上的应用.解法一:y′=2sinxcosx=sin2x. 令y′<0,即sin2x<0,∴2kπ-π<2x<2kπ,k∈Z. ∴kπ- <x<kπ,k∈Z.∴函数y=sin2x的单调递减区间是(kπ- ,kπ),k∈Z.解法二:y=sin2x=- cos2x+ ,函数的减区间即cos2x的增区间,由2kπ-π<2x<2kπ, k∈Z,得kπ- <x<kπ,k∈Z.∴函数y=sin2x的单调递减区间是(kπ- ,kπ),k∈Z.答案:(kπ- ,kπ),k∈Z12.设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f(x)g′(x)+f′(x)g(x)>0且g(-3)=0,则不等式f(x)g(x)<0的解集是__________.分析:本题主要考查导数的运算法则及函数的性质.利用f(x)g(x)构造一个新函数 (x)=f(x)g(x),利用 (x)的性质解决问题.解:设 (x)=f(x)g(x),则 ′(x)=f(x)g′(x)+f′(x)g(x)>0.∴ (x)在(-∞,0)上是增函数且 (-3)=0.又∵f(x)为奇函数,g(x)为偶函数, ∴ (x)=f(x)g(x)为奇函数.∴ (x)在(0,+∞)上也是增函数且 (3)=0.当x<-3时, (x)< (-3)=0,即f(x)g(x)<0;当-3<x<0时, (x)> (-3)=0,即f(x)g(x)>0.同理,当0<x<3时, f(x)g(x)<0;当x>3时,f(x)g(x)>0.∴f(x)g(x)<0的解集为(-∞,-3)∪(0,3).答案:(-∞,-3)∪(0,3)13.有一长为16 m的篱笆,要围成一个矩形场地,则矩形场地的最大面积是_______m2.分析:本题考查如何求函数的最值问题,其关键是建立目标函数.解:设场地的长为x m,则宽为(8-x) m,有S=x(8-x)=-x2+8x,x∈(0,8).令S′=-2x+8=0,得x=4.∵S在(0,8)上只有一个极值点, ∴它必是最值点,即Smax=16.此题也可用配方法、均值不等式法求最值.答案:1614.过曲线y=lnx上的点P的切线平行于直线y= x+2,则点P的坐标是__________.分析:本题考查导数的几何意义.本题可采取逆向思维,构造关于切点横坐标的方程.解:因直线y= x+2的斜率为k= , 又因y=lnx,所以y′= = .所以x=2.将x=2代入曲线y=lnx的方程,得y=ln2. 所以点P的坐标是(2,ln2).答案:(2,ln2)三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题10分)某工厂需要建一个面积为512 m2的矩形堆料场,一边可以利用原有的墙壁,问堆料场的长和宽各为多少时,才能使砌墙所用的材料最省?分析:本题考查如何求函数的最值问题,其关键是建立目标函数.解:要求材料最省就是要求新砌的墙壁总长度最短.如下图所示,设场地一边长为x m,则另一边长为 m,因此新墙总长度L=2x+ (x>0), 4分L′=2- .令L′=2- =0,得x=16或x=-16. 6分∵x>0,∴x=16. 7分∵L在(0,+∞)上只有一个极值点,∴它必是最小值点.∵x=16,∴ =32. 9分故当堆料场的宽为16 m,长为32 m时,可使砌墙所用的材料最省. 10分注:本题也可利用均值不等式求解.16.(本小题12分)已知函数y=ax与y=- 在区间(0,+∞)上都是减函数,试确定函数y=ax3+bx2+5的单调区间.分析:本题主要考查利用导数确定函数的单调区间.可先由函数y=ax与y=- 的单调性确定a、b的取值范围,再根据a、b的取值范围去确定函数y=ax3+bx2+5的单调区间.解:∵函数y=ax与y=- 在区间(0,+∞)上是减函数,∴a<0,b<0. 3分由y=ax3+bx2+5,得y′=3ax2+2bx. 6分令y′>0,即3ax2+2bx>0,∴- <x<0.因此当x∈(- ,0)时,函数为增函数; 8分令y′<0,即3ax2+2bx<0,∴x<- 或x>0. 10分因此当x∈(-∞,- )时,函数为减函数;x∈(0,+∞)时,函数也为减函数. 12分17.(本小题10分)当x>0时,求证:ex>x+1.分析:本题考查利用导数证明不等式的问题.解题的关键是由导数确定单调区间,由函数在某一区间上的单调性构造不等式求解.证明:不妨设f(x)=ex-x-1, 3分则f′(x)=(ex)′-(x)′=ex-1. 6分∵x>0,∴ex>1,ex-1>0.∴f′(x)>0,即f(x)在(0,+∞)上是增函数. 8分∴f(x)>f(0),即ex-x-1>e0-1=0.∴ex>x+1. 10分18.(本小题10分)如右图,已知曲线C1:y=x3(x≥0)与曲线C2:y=-2x3+3x(x≥0)交于点O、A,直线x=t(0<t<1)与曲线C1、C2分别相交于点B、D.(1)写出四边形ABOD的面积S与t的函数关系S=f(t);(2)讨论f(t)的单调性,并求f(t)的最大值.分析:本题主要考查如何以四边形的面积为载体构造目标函数、函数的导数、函数的单调性等基础知识,考查运算能力和利用导数研究函数的单调性,从而确定函数的最值.解:(1)解方程组 得交点O、A的坐标分别为(0,0),(1,1). 2分f(t)=S△ABD+S△OBD= |BD|·|1-0|= |BD|= (-2t3+3t-t3)= (-3t3+3t),即f(t)=- (t3-t)(0<t<1). 4分(2)f′(t)=- . 6分令f′(t)=- =0,得 (舍去).当0<t< 时,f′(t)>0,从而f(t)在区间(0, )上是增函数; 8分当 <t<1时,f′(t)<0,从而f(t)在区间( ,1)上是减函数.所以当t= 时,f(t)有最大值f( )= . 10分19.(本小题12分)某工厂生产某种产品,已知该产品的月生产量x(t)与每吨产品的价格p(元/t)之间的关系式为:p=24200- x2,且生产x t的成本为:R=50000+200x(元).问该产品每月生产多少吨才能使利润达到最大?最大利润是多少?(利润=收入-成本)分析:本题主要考查利用导数求函数的最值.根据题意,列出函数关系式,求导求解.解:每月生产x吨时的利润为f(x)=(24200- x2)x-(50000+200x)=- x3+24000x-50000(x≥0). 4分由f′(x)=- x2+24000=0,解得x1=200,x2=-200(舍去). 8分∵f(x)在[0,+∞)内只有一个点x1=200使f′(x)=0,∴它就是最大值点.f(x)的最大值为f(200)=3150000(元).∴每月生产200 t才能使利润达到最大,最大利润是315万元. 12分

二次求导的用法与意义 最好找个例题 谢谢

高中导数的题型及解题技巧如下:

一、利用导数研究切线问题

1、解题思路:关键是要有切点横坐标,以及利用三句话来列式。具体来说,题目必须出现切点横坐标,如果没有切点坐标,必须自设切点坐标。然后,利用三句话来列式:切点在切线上;切点在曲线上;斜率等于导数。用这三句话,百分之百可以解答全部切线问题。

2、另外,二次函数的切线问题,则可不需要用这三句话来解答,可以直接联立切线和曲线的方程组,令判别式等于0。

二、利用导数研究函数的单调性

解题思路:求定义域——求导——讨论参数,判断单调性。首先,务必要先求定义域,以免单调区间落在定义域之外;其次,求导务必要仔细,要检查,否则求导错误,后面全军覆没;最后,带参数的函数,务必要谈论参数,根据参数来判断单调性和求单调区间。

三、利用导数研究函数的极值和最值

解题思路:求定义域——求导——讨论参数,判断单调性——求极值——求最值前面跟(2)的解题思路一样,后面衔接下去,就是求极值和求最值了。要想求极值,必须先判断单调性。而求最值,则需要依据单调性、极值和端点值来判断。

四、利用导数研究不等式

1、解题思路:求定义域——求导——讨论参数,判断单调性——求极值——求最值——解不等式。从这个解题思路可以看得出,导数不等式的本质是最值问题。因此,导数不等式,就是必须先求最值。

2、利用导数不等式,绝对是超级难点,也是高考导数大题的第2小问常考的考点。大家要紧紧抓住“导数不等式就是最值问题”这句话,循序渐进地思考解题,多训练,必能完成此类题的攻克和解题。

五、利用导数研究方程

解题思路:第一步,提取参数到一边,设另一边为函数h(x);第二步,对函数h(x)求导,判断单调性,求极值,并作图;第三步,观察比较直线与曲线h(x)的交点个数。

 我们都知道用导函数判断原函数的单调性,如果导函数大于零,则原函数为增,导函数小于零,则原函数为减。在求出导函数后,如果再继续对导函数求导,即求出,则可以用去判断的增减性,如下图:

下面我们结合高考题来看看二次求导在解高考数学函数压轴题中的应用

理·2010全国卷一第20题已知函数.

(Ⅰ)若,求的取值范围;

(Ⅱ)证明:

 先看第一问,首先由可知函数的定义域为,易得

 则由可知,化简得

 ,这时要观察一下这个不等式,显然每一项都有因子,而又大于零,所以两边同乘可得,所以有,在对求导有

 ,即当<<时,>0,在区间上为增函数;当时,;当<时,<0,在区间上为减函数。

 所以在时有最大值,即。又因为,所以。

 应该说第一问难度不算大,大多数同学一般都能做出来。再看第二问。

 要证,只须证当<时,;当<时,>即可。

 由上知,但用去分析的单调性受阻。我们可以尝试再对求导,可得,显然当<时,;当<时,>,即在区间上为减函数,所以有当<时, ,我们通过二次求导分析的单调性,得出当<时,则在区间上为增函数,即,此时,则有成立。

 下面我们在接着分析当<时的情况,同理,当<时,>,即在区间上为增函数,则,此时,为增函数,所以,易得也成立。

 综上,得证。

 下面提供一个其他解法供参考比较。

 解:(Ⅰ),则

 题设等价于。

 令,则。

 当<<时,>;当时,,是的最大值点,所以 。

 综上,的取值范围是。

 (Ⅱ)由(Ⅰ)知,,即。

 当<<时,

 

 因为<0,所以此时。

 当时,。

 所以

 比较上述两种解法,可以发现用二次求导的方法解题过程简便易懂,思路来得自然流畅,难度降低,否则,另外一种解法在解第二问时用到第一问的结论,而且运用了一些代数变形的技巧,解法显得偏而怪,同学们不易想出。

 不妨告诉同学们一个秘密:熟炼掌握二次求导分析是解决高考数学函数压轴题的一个秘密武器!下面我们再看一道高考压轴题。

 理·2010全国卷三第21题设函数。

 (Ⅰ)若,求的单调区间;

 (Ⅱ)若当时,。求的取值范围。

 第一问没有任何难度,通过求导数来分析的单调即可。

 当,,令,得;当<时,<;当>时,>。所以在区间上为减函数,在区间上为增函数。

 第二问,其实第一问算是个提示,即当时,在区间上为增函数,故,显然满足题意。

 下面我们分别分析<和>两种情况。

 当<时,在区间上显然,综上可得在区间上成立。故<满足题意。

 当>时,,,显然,,当在区间上大于零时,为增函数,,满足题意。而当在区间上为增函数时,,也就是说,要求在区间上大于等于零,又因为在区间上为增函数,所以要求,即,解得。

 综上所述,的取值范围为。

 通过上面两道压轴题,我们已经领略了二次求导在分析高考数学函数压轴题的威力。

 再看看某些省市的函数题。

理·2010安徽卷第17题设为实数,函数。

(Ⅰ)求的单调区间与极值;

(Ⅱ)求证:当>且>时,>。

第一问很常规,我们直接看第二问。首先要构造一个新函数,如果这一着就想不到,那没辙了。然后求导,结果见下表。

,继续对求导得

减 极小值 增

由上表可知,而

,由>知

 >,所以>,即在区间上为增函数。

 于是有>,而,

 故>,即当>且>时,>。

高中数学题一般最后都会给个求导,并且大部分都是二次的。很多时候,一道题,你看到就知道要求导,当你一次求导后发现得出的结果还存在未知的东西,极值什么的没有清晰得表现出来,就可以考虑二次求导。当然,还有三次求导的,这个时候要非常细心,观察全局,不然做到后边很容易出错。

文章标签: # 函数 # lt # gt