您现在的位置是: 首页 > 教育研究 教育研究

高考数学题圆锥曲线,高考题圆锥曲线

tamoadmin 2024-06-09 人已围观

简介1.高考圆锥曲线2.一道数学高考题 关于圆锥曲线的,帮帮忙3.圆锥曲线的几何性质4.高考数学中圆锥曲线的经典例子?5.圆锥曲线在高考中的占比圆锥曲线是解析几何中的重点,也是高中数学的重点之一,也是历年高考数学试题命制的热 点和重点;圆锥曲线试题特别是综合题在高考中常处于压轴题的位置,题型变化灵活,能考察学 生的能力立意和思维空间,是出活题,考能力的典范;由于向量、导数等新内容的充实,圆锥曲 线试题

1.高考圆锥曲线

2.一道数学高考题 关于圆锥曲线的,帮帮忙

3.圆锥曲线的几何性质

4.高考数学中圆锥曲线的经典例子?

5.圆锥曲线在高考中的占比

高考数学题圆锥曲线,高考题圆锥曲线

圆锥曲线是解析几何中的重点,也是高中数学的重点之一,也是历年高考数学试题命制的热 点和重点;圆锥曲线试题特别是综合题在高考中常处于压轴题的位置,题型变化灵活,能考察学 生的能力立意和思维空间,是出活题,考能力的典范;由于向量、导数等新内容的充实,圆锥曲 线试题逐渐向多元化、交汇型发展,除了传统的求圆锥曲线方程,直线与圆锥曲线的位置关系外, 还增加开放性、探索性问题等;下面将对近年考题中的部分圆锥曲线题型进行分析探索。

一、圆锥曲线的考点和难点

圆锥曲线考查的范围很广,但其主要考查学生对圆锥曲线的定义,性质等基础知识的掌握, 还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热 点,也是同学们主要的难点;但我们会发现它就考查了学生对各种圆锥曲线定义,性质及综合知 识的的运用,比如在考卷的选择和填空中基本上都考查的是圆锥曲线的基本性质和定义,比如求 曲线的标准方程,离心率等,在后面解答题中通常第一问也考查标准方程等,主要是第二问考查 的范围就比较广了,比如与函数,不等式,三角形及面积最值等题型结合,难度就大大增加了。

二、对圆锥曲线的基础知识考查

(一)考查圆锥曲线的标准方程: 对这个知识点的考查一般不会很难,都较为基础,只要考生对标准方程公式及重

要定义熟悉,都教容易解得答案;例如 2010 年上海(理)第 3 题 例(2010 上海)动点 P 到点 F (2, 0) 的距离与它到直线 x ? 2 ? 0 的距离相等, 则 P 的轨迹方程为 解析: 本题考查抛物线定义及标准方程定义知 P 的轨迹是以 F (2, 0) 为焦点的 抛物线,p=2 所以其方程为 y2?8x. (二)考查圆锥曲线的离心率:

高考圆锥曲线

这种题一般有两种解法:常规法(联立求k,设而不求)和点差法(解觉弦中点问题).

如果遇到"是否存在这点"一般都设存在这点"然后根据已知条件联立(设而不求)"如果算出了这点还需要带入联立地方程检验b平方减4ac是否大于等于零.

一道数学高考题 关于圆锥曲线的,帮帮忙

圆锥曲线定义的应用

规律与方法:

1、圆锥曲线的定义是相应标准方程和几何性质的“源”,对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略.

2、研究有关点间的距离的最值问题时,常用定义把曲线上的点到焦点的距离转化为到另一焦点的距离或利用定义把曲线上的点到焦点的距离转化为其到相应准线的距离,再利用数形结合的思想去解决有关的最值问题.

例1 若点M(2,1),点C是椭圆x216+y2

7

=1的右焦点,点A是椭圆的动点,则|AM|+|AC|的最

小值是________

跟踪训练1 已知椭圆x29+y2

5=1,F1、F2分别是椭圆的左、右焦点,点A(1,1)为椭圆内一点,

点P为椭圆上一点,求|PA|+|PF1|的最大值.

2

题型二 有关圆锥曲线性质的问题

规律与方法

有关圆锥曲线的焦点、离心率、渐近线等问题是考试中常见的问题,只要掌握基本公式和概念,并且充分理解题意,大都可以顺利求解.

例2 已知椭圆x23m2+y25n2=1和双曲线x22m2-y2

3n2=1有公共的焦点,那么双曲线的渐近线

方程是

跟踪训练2 已知双曲线x2a2-y2b2=1的离心率为2,焦点与椭圆x225+y2

9=1的焦点相同,那

么双曲线的焦点坐标为________;渐近线方程为________.

题型三 直线与圆锥曲线位置关系问题

规律与方法:

1.直线和圆锥曲线的位置关系可分为三类:无公共点、仅有一个公共点及有两个相异的公共点.其中,直线与圆锥曲线仅有一个公共点,对于椭圆,表示直线与其相切;对于双曲线,表示与其相切或直线与双曲线的渐近线平行;对于抛物线,表示与其相切或直线与其对称轴平行.

2.有关直线与圆锥曲线的位置关系的题目可能会涉及直线与圆锥曲线的关系中的弦长、焦点弦及弦中点问题、取值范围、最值等问题.

3.这类问题综合性强,分析这类问题,往往利用数形结合的思想和“设而不求”的方法、对称的方法及根与系数的关系等.

例3 已知椭圆C:x2a2+y2b2=1 (a>b>0)的离心率为6

3,短轴一个端点到右焦点的距离为3.

(1)求椭圆C的方程;

(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为3

2

,求△AOB面积的最大值.

3

跟踪训练3 已知向量a=(x,3y),b=(1,0)且(a+3b)⊥(a-3b). (1)求点Q(x,y)的轨迹C的方程;

(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,-1),当|AM|=|AN|时,求实数m的取值范围

题型四 与圆锥曲线有关的轨迹问题

规律与方法:

轨迹是动点按一定规律运动而形成的,轨迹的条件可以用动点坐标表示出来.求轨迹方程的基本方法是

(1)直接法求轨迹方程:建立适当的直角坐标系,根据条件列出方程; (2)待定系数法求轨迹方程:根据曲线的标准方程; (3)定义法求轨迹方程:动点的轨迹满足圆锥曲线的定义;

(4)代入法求轨迹方程:动点M(x,y)取决于已知曲线C上的点(x0,y0)的坐标变化,根据两者关系,得到x,y,x0,y0的关系式,用x,y表示x0,y0,代入曲线C的方程. 例4 如图,已知线段AB=4,动圆O1与线段AB切于点C,且AC-BC=22,过点A、B分别作圆O1切线,两切线交于点P,且P、O1均在AB的同侧,求动点P的轨迹方程.

圆锥曲线的几何性质

设A(x1,y1),B(x2,y2),C(x3,y3),F(1,0),由向量FA+向量FB+向量FC=向量0,则x1+x2+x3=3,向量FA的模+向量FB的模+向量FC模=(x1+p/2)+(x2+p/2)+(x3+p/2)=6。(利用抛物线的特点,将向量FA的模转移到准线上)

高考数学中圆锥曲线的经典例子?

问题一:圆锥曲线到大学才知道的几何性质有那些? 列上一些 带证明更谢谢了 现在高中出题基本上都是大学 高考源于教材,必须略高于教材。

本人结合历年高考编著一本《高考常考的大一数学》有关圆锥曲线的有四线一方程。

1、 若P(x0,y0)在椭圆x2/a2+y2/b2=1上,得到切线方程为

x0x/a2+y0y/b2=1;

若P(x0,y0)在椭圆x2/a2+y2/b2=1外,得到切点弦方程为

x0x/a2+y0y/b2=1;

这两个方程形式一样,含义不一样。PPPPPP2

2、 若P(x0,y0)在双曲线x2/a2-y2/b2=1上,得到切线方程为

x0x/a2-y0y/b2=1;

若P(x0,y0)在椭圆x2/a2-y2/b2=1外,得到切点弦方程为

x0x/a2-y0y/b2=1;

3、 若P(x0,y0)在抛物线y2=2px上,得到切线方程为

y0y=p(x0+x);

若P(x0,y0)在抛物线y2=2px外,得到切点弦方程为

y0y=p(x0+x);

与庆杰高歌同行数学加强班为你提供!《高考常考的大一数学》一本15元,若要,短信联系13608614549

问题二:圆锥曲线的解题技巧? 1.圆锥曲线的两个定义:

(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F ,F 的距离的和等于常数 ,且此常数 一定要大于 ,当常数等于 时,轨迹是线段F F ,当常数小于 时,无轨迹;双曲线中,与两定点F ,F 的距离的差的绝对值等于常数 ,且此常数 一定要小于|F F |,定义中的“绝对值”与 <|F F |不可忽视。若 =|F F |,则轨迹是以F ,F 为端点的两条射线,若 |F F |,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

如方程 表示的曲线是_____(答:双曲线的左支)

(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。

如已知点 及抛物线 上一动点P(x,y),则y+|PQ|的最小值是_____(答2)

2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):

(1)椭圆:焦点在 轴上时 ( ),焦点在 轴上时 =1( )。方程 表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。

如(1)已知方程 表示椭圆,则 的取值范围为____(答: );

(2)若 ,且 ,则 的最大值是____, 的最小值是___(答: )

(2)双曲线:焦点在 轴上: =1,焦点在 轴上: =1( )。方程 表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。

如设中心在坐标原点 ,焦点 、 在坐标轴上,离心率 的双曲线C过点 ,则C的方程为_______(答: )

(3)抛物线:开口向右时 ,开口向左时 ,开口向上时 ,开口向下时 。

如定长为3的线段AB的两个端点在y=x2上移动,AB中点为M,求点M到x轴的最短距离。

3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):

(1)椭圆:由 , 分母的大小决定,焦点在分母大的坐标轴上。

如已知方程 表示焦点在y轴上的椭圆,则m的取值范围是__(答: )

(2)双曲线:由 , 项系数的正负决定,焦点在系数为正的坐标轴上;

(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。

特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F ,F 的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数 ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中, 最大, ,在双曲线中, 最大, 。

4.圆锥曲线的几何性质:

(1)椭圆(以 ( )为例):①范围: ;②焦点:两个焦点 ;③对称性:两条对称轴 ,一个对称中心(0,0),四个顶点 ,其中长轴长为2 ,短轴长为2 ;④准线:两条准线 ; ⑤离心率: ,椭圆 , 越小,椭圆越圆; 越大,椭圆越扁。

如(1)若椭圆 的离心率 ,则 的值是__(答:3或 );

(2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__(答: )

(2)双曲线(以 ( )为例):①范围: 或 ;②焦点:两个焦点 ;③对称性:两条对称轴 ,一个对称中心(0,0),两个顶点 ,其中实轴长为2 ,虚轴长为2 ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 ;④准线:两条准线 ; ⑤离心率: ,双曲线 ,等轴双曲线 , 越......>>

问题三:圆锥曲线六大名圆分别是什么,有什么性质? 圆锥曲线统一定义:(第二定义)

平面上到定点(焦点)的距离与到定直线(准线)的距离为定值(离心率e)的点的 *** .而根据e的大小分为椭圆,抛物线,双曲线.圆可看作e为0的曲线.

1.0x^2/a^2+y^2/b^2=1(0y^2/a^2+y^2/b^2=1(0a^2=b^2+c^2

椭圆上任意一点到两焦点距离之和为2a(定值),且大于焦距2c,这是第一定义

问题四:谁能告诉我现在什么游戏正在公测? 去17173

圆锥曲线在高考中的占比

椭圆标准方程典型例题

例1 已知椭圆 的一个焦点为(0,2)求 的值.

分析:把椭圆的方程化为标准方程,由 ,根据关系 可求出 的值.

解:方程变形为 .因为焦点在 轴上,所以 ,解得 .

又 ,所以 , 适合.故 .

例2 已知椭圆的中心在原点,且经过点 , ,求椭圆的标准方程.

分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法,

求出参数 和 (或 和 )的值,即可求得椭圆的标准方程.

解:当焦点在 轴上时,设其方程为 .

由椭圆过点 ,知 .又 ,代入得 , ,故椭圆的方程为 .

当焦点在 轴上时,设其方程为 .

由椭圆过点 ,知 .又 ,联立解得 , ,故椭圆的方程为 .

例3 的底边 , 和 两边上中线长之和为30,求此三角形重心 的轨迹和顶点 的轨迹.

分析:(1)由已知可得 ,再利用椭圆定义求解.

(2)由 的轨迹方程 、 坐标的关系,利用代入法求 的轨迹方程.

解: (1)以 所在的直线为 轴, 中点为原点建立直角坐标系.设 点坐标为 ,由 ,知 点的轨迹是以 、 为焦点的椭圆,且除去轴上两点.因 , ,有 ,

故其方程为 .

(2)设 , ,则 . ①

由题意有 代入①,得 的轨迹方程为 ,其轨迹是椭圆(除去 轴上两点).

例4 已知 点在以坐标轴为对称轴的椭圆上,点 到两焦点的距离分别为 和 ,过 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.

解:设两焦点为 、 ,且 , .从椭圆定义知 .即 .

从 知 垂直焦点所在的对称轴,所以在 中, ,

可求出 , ,从而 .

∴所求椭圆方程为 或 .

例5 已知椭圆方程 ,长轴端点为 , ,焦点为 , , 是椭圆上一点, , .求: 的面积(用 、 、 表示).

分析:求面积要结合余弦定理及定义求角 的两邻边,从而利用 求面积.

解:如图,设 ,由椭圆的对称性,不妨设 ,由椭圆的对称性,不妨设 在第一象限.由余弦定理知: ? .①

由椭圆定义知: ②,则 得 .

故 .

例6 已知动圆 过定点 ,且在定圆 的内部与其相内切,求动圆圆心 的轨迹方程.

分析:关键是根据题意,列出点P满足的关系式.

解:如图所示,设动圆 和定圆 内切于点 .动点 到两定点,

即定点 和定圆圆心 距离之和恰好等于定圆半径,

即 .∴点 的轨迹是以 , 为两焦点,

半长轴为4,半短轴长为 的椭圆的方程: .

说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.

例7 已知椭圆 ,(1)求过点 且被 平分的弦所在直线的方程;

(2)求斜率为2的平行弦的中点轨迹方程;

(3)过 引椭圆的割线,求截得的弦的中点的轨迹方程;

(4)椭圆上有两点 、 , 为原点,且有直线 、 斜率满足 ,

求线段 中点 的轨迹方程.

分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.

解:设弦两端点分别为 , ,线段 的中点 ,则

①-②得 .

由题意知 ,则上式两端同除以 ,有 ,

将③④代入得 .⑤

(1)将 , 代入⑤,得 ,故所求直线方程为: . ⑥

将⑥代入椭圆方程 得 , 符合题意, 为所求.

(2)将 代入⑤得所求轨迹方程为: .(椭圆内部分)

(3)将 代入⑤得所求轨迹方程为: .(椭圆内部分)

(4)由①+②得 : , ⑦, 将③④平方并整理得

, ⑧, , ⑨

将⑧⑨代入⑦得: , ⑩

再将 代入⑩式得: , 即 .

此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.

例8 已知椭圆 及直线 .

(1)当 为何值时,直线与椭圆有公共点?

(2)若直线被椭圆截得的弦长为 ,求直线的方程.

解:(1)把直线方程 代入椭圆方程 得 ,

即 . ,解得 .

(2)设直线与椭圆的两个交点的横坐标为 , ,由(1)得 , .

根据弦长公式得 : .解得 .方程为 .

说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.

这里解决直线与椭圆的交点问题,一般考虑判别式 ;解决弦长问题,一般应用弦长公式.

用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程.

例9 以椭圆 的焦点为焦点,过直线 上一点 作椭圆,要使所作椭圆的长轴最短,点 应在何处?并求出此时的椭圆方程.

分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须利用对称就可解决.

解:如图所示,椭圆 的焦点为 , .

点 关于直线 的对称点 的坐标为(-9,6),直线 的方程为 .

解方程组 得交点 的坐标为(-5,4).此时 最小.

所求椭圆的长轴: ,∴ ,又 ,

∴ .因此,所求椭圆的方程为 .

例10 已知方程 表示椭圆,求 的取值范围.

解:由 得 ,且 .

∴满足条件的 的取值范围是 ,且 .

说明:本题易出现如下错解:由 得 ,故 的取值范围是 .

出错的原因是没有注意椭圆的标准方程中 这个条件,当 时,并不表示椭圆.

例11 已知 表示焦点在 轴上的椭圆,求 的取值范围.

分析:依据已知条件确定 的三角函数的大小关系.再根据三角函数的单调性,求出 的取值范围.

解:方程可化为 .因为焦点在 轴上,所以 .

因此 且 从而 .

说明:(1)由椭圆的标准方程知 , ,这是容易忽视的地方.

(2)由焦点在 轴上,知 , . (3)求 的取值范围时,应注意题目中的条件 .

例12 求中心在原点,对称轴为坐标轴,且经过 和 两点的椭圆方程.

分析:由题设条件焦点在哪个轴上不明确,椭圆标准方程有两种情形,为了计算简便起见,

可设其方程为 ( , ),且不必去考虑焦点在哪个坐标轴上,直接可求出方程.

解:设所求椭圆方程为 ( , ).由 和 两点在椭圆上可得

即 所以 , .故所求的椭圆方程为 .

例13 知圆 ,从这个圆上任意一点 向 轴作垂线段,求线段中点 的轨迹.

分析:本题是已知一些轨迹,求动点轨迹问题.这种题目一般利用中间变量(相关点)求轨迹方程或轨迹.

解:设点 的坐标为 ,点 的坐标为 ,则 , .

因为 在圆 上,所以 .

将 , 代入方程 得 .所以点 的轨迹是一个椭圆 .

说明:此题是利用相关点法求轨迹方程的方法,这种方法具体做法如下:首先设动点的坐标为 ,

设已知轨迹上的点的坐标为 ,然后根据题目要求,使 , 与 , 建立等式关系,

从而由这些等式关系求出 和 代入已知的轨迹方程,就可以求出关于 , 的方程,

化简后即我们所求的方程.这种方法是求轨迹方程的最基本的方法,必须掌握.

例14 已知长轴为12,短轴长为6,焦点在 轴上的椭圆,过它对的左焦点 作倾斜解为 的直线交椭圆于 , 两点,求弦 的长.

分析:可以利用弦长公式 求得,

也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求.

解:(法1)利用直线与椭圆相交的弦长公式求解.

.因为 , ,所以 .因为焦点在 轴上,

所以椭圆方程为 ,左焦点 ,从而直线方程为 .

由直线方程与椭圆方程联立得: .设 , 为方程两根,所以 , , , 从而 .

(法2)利用椭圆的定义及余弦定理求解.

由题意可知椭圆方程为 ,设 , ,则 , .

在 中, ,即 ;

所以 .同理在 中,用余弦定理得 ,所以 .

(法3)利用焦半径求解.

先根据直线与椭圆联立的方程 求出方程的两根 , ,它们分别是 , 的横坐标.

再根据焦半径 , ,从而求出 .

例15 椭圆 上的点 到焦点 的距离为2, 为 的中点,则 ( 为坐标原点)的值为A.4   B.2  C.8  D.

解:如图所示,设椭圆的另一个焦点为 ,由椭圆第一定义得 ,所以 ,

又因为 为 的中位线,所以 ,故答案为A.

说明:(1)椭圆定义:平面内与两定点的距离之和等于常数(大于 )的点的轨迹叫做椭圆.

(2)椭圆上的点必定适合椭圆的这一定义,即 ,利用这个等式可以解决椭圆上的点与焦点的有关距离.

例16 已知椭圆 ,试确定 的取值范围,使得对于直线 ,椭圆 上有不同的两点关于该直线对称.

分析:若设椭圆上 , 两点关于直线 对称,则已知条件等价于:(1)直线 ;(2)弦 的中点 在 上.

利用上述条件建立 的不等式即可求得 的取值范围.

解:(法1)设椭圆上 , 两点关于直线 对称,直线 与 交于 点.

∵ 的斜率 ,∴设直线 的方程为 .由方程组 消去 得

 ①。∴ .于是 , ,

即点 的坐标为 .∵点 在直线 上,∴ .解得 . ②

将式②代入式①得 ③

∵ , 是椭圆上的两点,∴ .解得 .

(法2)同解法1得出 ,∴ ,

,即 点坐标为 .

∵ , 为椭圆上的两点,∴ 点在椭圆的内部,∴ .解得 .

(法3)设 , 是椭圆上关于 对称的两点,直线 与 的交点 的坐标为 .

∵ , 在椭圆上,∴ , .两式相减得 ,

即 .∴ .

又∵直线 ,∴ ,∴ ,即①。

又 点在直线 上,∴ ②。由①,②得 点的坐标为 .以下同解法2.

说明:涉及椭圆上两点 , 关于直线 恒对称,求有关参数的取值范围问题,可以采用列参数满足的不等式:

(1)利用直线 与椭圆恒有两个交点,通过直线方程与椭圆方程组成的方程组,消元后得到的一元二次方程的判别式 ,建立参数方程.

(2)利用弦 的中点 在椭圆内部,满足 ,将 , 利用参数表示,建立参数不等式.

例17 在面积为1的 中, , ,建立适当的坐标系,求出以 、 为焦点且过 点的椭圆方程.

解:以 的中点为原点, 所在直线为 轴建立直角坐标系,设 .

则 ∴ 即 ∴ 得

∴所求椭圆方程为

例18 已知 是直线 被椭圆 所截得的线段的中点,求直线 的方程.

分析:本题考查直线与椭圆的位置关系问题.通常将直线方程与椭圆方程联立消去 (或 ),得到关于 (或 )的一元二次方程,再由根与系数的关系,直接求出 , (或 , )的值代入计算即得.

并不需要求出直线与椭圆的交点坐标,这种“设而不求”的方法,在解析几何中是经常采用的.

解:方法一:设所求直线方程为 .代入椭圆方程,整理得

设直线与椭圆的交点为 , ,则 、 是①的两根,∴

∵ 为 中点,∴ , .∴所求直线方程为 .

方法二:设直线与椭圆交点 , .∵ 为 中点,∴ , .

又∵ , 在椭圆上,∴ , 两式相减得 ,

即 .∴ .∴直线方程为 .

方法三:设所求直线与椭圆的一个交点为 ,另一个交点 .

∵ 、 在椭圆上,∴ ①。  ②

从而 , 在方程①-②的图形 上,而过 、 的直线只有一条,∴直线方程为 .

说明:直线与圆锥曲线的位置关系是重点考查的解析几何问题,“设而不求”的方法是处理此类问题的有效方法.

若已知焦点是 、 的椭圆截直线 所得弦中点的横坐标是4,则如何求椭圆方程?

该占比在15%左右。

根据2023年考试大纲,圆锥曲线在高考中的占比通常为25-30分,在整张高考试卷中占比约为15%。

圆锥曲线是高考压轴题必考题型之一,这个考点主要考查学生对圆锥曲线的理解与掌握,包括椭圆的定义及标准方程、双曲线的定义及标准方程、抛物线的定义及标准方程等知识点。

文章标签: # 椭圆 # 方程 # 直线