您现在的位置是: 首页 > 教育研究 教育研究

高考函数大小比较_数学高考函数比大小

tamoadmin 2024-06-03 人已围观

简介1.指数函数比较大小口诀2.对数函数与指数函数如何比大小3.对数函数怎么比较大小?4.对数函数比较大小的方法指数函数比较大小的方法如下:(1)比差(商)法:(2)函数单调性法;(3)中间值法:要比较A与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B之间的大小。注意事项:(1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断。例如:y1=3

1.指数函数比较大小口诀

2.对数函数与指数函数如何比大小

3.对数函数怎么比较大小?

4.对数函数比较大小的方法

高考函数大小比较_数学高考函数比大小

指数函数比较大小的方法如下:

(1)比差(商)法:(2)函数单调性法;(3)中间值法:要比较A与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B之间的大小。

注意事项:

(1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断。

例如:y1=3^4,y2=3^5,因为3大于1所以函数单调递增(即x的值越大,对应的y值越大),因为5大于4,所以y2大于y1。

(2)对于底数不同,指数相同的两个幂的大小比较,可以利用指数函数图像的变化规律来判断。

指数函数是重要的基本初等函数之一。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R 。注意,在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。

指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。

指数函数比较大小口诀

一次函数比较y值的大小有两种方法:

(1)根据性质判断:

因为一次函数的解析式是:y=Kx+b,

当K>0时,y随X的增大而增大,

所以当X1>X2时,则y1>y2,反之,当X1<X2时,则y1<y2;

当K<0时,y随X的增大而减少,

所以当X1>X2时,则y1<y2,反之,当X1<X2时,则y1>y2;

(2)根据图象判断:

因为一次函数的图象是一条直线,只要在图象上找出对应点即可;如下图:

对数函数与指数函数如何比大小

指数函数比较大小:比差(商)法;函数单调性法;中间值法。指数函数是重要的基本初等函数之一。

指数函数如何比大小

你可以根据图像判断:当底都大于1时,底较大的那个图像陡一些,此时,在第一象限即x>0时,底大的函数值大;在第三象限即x<0时,底小的函数值大;x=0时,函数值都为1.底大于1时函数是增函数。当底都小于1时,底较小的那个图像陡些,此时,在第二象限即x<0时,底小的函数值大;在第四象限即x>0时,底较大的函数值大;x=0时,函数值都为1。底小于1时函数是减函数。

指数函数幂的比较

比较大小常用方法

(1)做差(商)法:A-B大于0即A大于B,A-B等于0即A=B,A-B小于0即A小于B。

步骤:做差—变形—定号—下结论;A\B大于1即A大于B,A\B等于1即A等于B,A/B小于1即A小于B(A,B大于0)

(2)函数单调性法;

(3)中间值法:要比较A与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B之间的大小。

注意事项

比较两个幂的大小时,除了上述一般方法之外,还应注意:

(1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断。

(2)对于底数不同,指数相同的两个幂的大小比较,可以利用指数函数图像的变化规律来判断。

(3)对于底数不同,且指数也不同的幂的大小比较,则可以利用中间值来比较。

<1>对于三个(或三个以上)的数的大小比较,则应该先根据值的大小(特别是与0、1的大小)进行分组,再比较各组数的大小即可。

<2>在比较两个幂的大小时,如果能充分利用“1”来搭“桥”(即比较它们与“1”的大小),就可以快速的得到答案。由指数函数的图像和性质可知“同大异小”。即当底数a和1与指数x与0之间的不等号同向时,a的x次幂大于1,异向时a的x次幂小于1。

对数函数怎么比较大小?

答:对数函数比大小和指数函数比大小的方法如下:

对数比大小

对数的比较主要就是结合图像和利用换底公式。

一、底数相同。

1:底数a>1时,比较真数,真数大的对数大。

2:底数0<a<1时,比较真数,真数大的对数小。

二、底数不相同,真数不相同时。

这种情况下通常采用换底公式,化为相同底数进行比较。

如果不容易化为同一底数,通常有一定技巧。

三、底数不相同,真数相同。

1:底数a>1时,比较底数,底数大的对数小。

2:底数0<a<1时,比较底数,底数大的对数大。

指数函数比大小

指数函数比大小常用方法:

(1)比差(商)法;

(2)函数单调性法;

(3)中间值法;

要比较A与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B之间的大小‘

比较两个幂的大小时,除了上述一般方法之外,还应注意:

(1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断。

(2)对于底数不同,指数相同的两个幂的大小比较,可以利用指数函数图像的变化规律来判断。

(3)对于底数不同,且指数也不同的幂的大小比较,则可以利用中间值来比较.如:

对于三个(或三个以上)的数的大小比较,则应该先根据值的大小(特别是与0、1的大小)进行分组,再比较各组数的大小即可.

在比较两个幂的大小时,如果能充分利用“1”来搭“桥”(即比较它们与“1”的大小),就可以快速的得到答案.那么如何判断一个幂与“1”大小呢?由指数函数的图像和性质可知“同大异小”.即当底数a和1与指数x与0之间的不等号同向(例如:a 〉1且x 〉0,或0〈 a〈 1且 x〈 0)时,a^x大于1,异向时a^x小于1.。

对数函数比较大小的方法

对数函数比较大小的口诀为:比较函数别着急,对数底数比一比,相同则看单调性,真同最好则换底。俩都不同没关系,中间值来帮助你,1与0看好不好,肯定马上觉容易。

通过对数函数图像判断大小

1、单调性方法,如果是底数一样可以用此方法,底数大于一,函数单增,指数越大,值越大,底数大于零小于一,函数单减,指数越小,值越大。对于对数函数,也是如此。

对于指数函数,如果指数相同,底数不同,实质上应用的是幂函数的单调性。

对于对数函数,如果真数相同,底数不同,如果底数都大于一,那么,告诉你一个规律,对数函数的图像,在x轴以上底数小的在上面,底数大的在下面,在X轴以下相反。这样,画出图像,竖着画一条平行于Y轴的线,就一目了然了。其实,总结一下的话,就是真数相同,底数大于一,底数越小,对数值越大。相反,底数小于一,在x轴以上底数小的在下面,底数大的在上面。

2、对于底数不同,但是真数相同的,可以很快的化同底。举个例子,比如log2.5和log7.5,log2.5=1/log5.2,log7.5=1/log5.7,因为log5.7>log 5.2,所以1/log5.7<1/log5.2,即log7.5<log2.5。

3、找中间值法,一般是对于对数函数而言的,先看正负,若一正一负,自然好,比如lg2和lg0.5.

若为同号,就和1比,如lg8(<1)和lg12(>1)

4、有时可以先化简再比较,原则是化为同底数,什么样的对数可以化为同底?这里不要使用换底公式的话,一般是底数或真数同为某个数的幂次才行。

y=logaX?

上下比较:在直线x=1的右侧,a>1时,a越大,图像向右越靠近x轴,0<a<1,a越小,图像向右越靠近x轴。

左右比较:比较图像与y=1的交点,焦点的横坐标越大,对应的函数的底数越大

文章标签: # 比较 # 大小 # 底数