您现在的位置是: 首页 > 教育研究 教育研究

高考数学第十六题数学_高考数学第17题第一问多少分

tamoadmin 2024-05-25 人已围观

简介1.2011新课标高考数学 第12 16题 怎么做2.2012年高考新课标卷数学(文)试题第16题解析3.高考数学,求第15,16题详细解答4.求文档: 2004全国高考数学立体几何题5.求解2012年数学高考山东卷16题(要过程)我的思考如下方程f(x)=0有一定有两根为1,-1又关于x=-2对称所以有两外两根为-5,-3代入可得b=15,a=16至此解析式得到求导的导数,令导数等于0求出极值点

1.2011新课标高考数学 第12 16题 怎么做

2.2012年高考新课标卷数学(文)试题第16题解析

3.高考数学,求第15,16题详细解答

4.求文档: 2004全国高考数学立体几何题

5.求解2012年数学高考山东卷16题(要过程)

高考数学第十六题数学_高考数学第17题第一问多少分

我的思考如下

方程f(x)=0

有一定有两根为1,-1

又关于x=-2对称所以有两外两根为-5,-3

代入可得b=15,a=16

至此解析式得到

求导的导数,令导数等于0

求出极值点,代入即可得到最大值

望采纳

有疑问请追问

2011新课标高考数学 第12 16题 怎么做

2011新课标高考数学(理)

14题:三角形ABF2周长=AF1+AF2+BF1+BF2

由椭圆第一定义得AF1+AF2=BF1+BF2=2a (其中a为椭圆半长轴长)

所以4a=16,a=4

由e=(根号2)/2,知c=2倍(根号2) (其中c为椭圆半焦距长)

所以b=2倍(根号2),椭圆方程为X^2/16+Y^2/8=1

15题:正弦定理得AB=2sinC,BC=2sinA

由C=180度-B-A=120度-A得:

AB+2BC=2sin(120度-A)+4sinA

=5sinA+(根号3)倍cosA

=[2倍(根号7)]倍sin(A+X) (其中sinX=(根号21)/14)

当sin(A+X) =1时,AB+2BC取得最大值,最大值为2倍(根号7)。

2012年高考新课标卷数学(文)试题第16题解析

12题选B,交点关于X=1对称,所以是4,

16题:设三角形ABC,作AD垂直于BC于D,则有BD+DC=BC,AB?-BD?=AC?-DC?,由此得,DC?=3-3BD?

AB+2BC=AB+2(BD+DC)=2BD+2BD+2DC=4BD+2DC,

假设BD=X,则AB+2BC=4X+2*根号(3-3X? ),令X=sin x,则=4sinx+2*根号3*cosx=4*(1/2sinx+(根号3)/2 *cosx)=sin

得2又根号7

高考数学,求第15,16题详细解答

f(x)=[(1+x^2)+sinx]/(x^2+1)=1+(2x+sinx)/(x^2+1),有

sinx/(x^2+1)<=f(x)<=2+sinx/(x^2+1) [注:不等式左边用的是分子去掉一个非负的部分值会变,如(1+x^2)/(x+5)>=1/(x+5),右边用的是a^2+b^2>=2ab,有1/(a^2+b^2)<=1/2ab.

继续变换下去,有-1/(x^2+1)<=f(x)<=2+sinx,

x^2+1>=1,1/(x^2+1)<=1,-1/(x^2+1)>=-1,显然2+sinx<=2+1=3

所以最后有-1<=f(x)<=3,M+m=3+(-1)=2

求文档: 2004全国高考数学立体几何题

第15题(理):因为c是正数,所以在两个不等式两边都除以c,不等号不变,然后就可以得到两个新的不等式,将a/c和b/c都看成一个整体,最后得到了a/c与b/c的关系,再比一下,就得到了b/a的范围了。

第16题题目不完整。

希望对你有用

求解2012年数学高考山东卷16题(要过程)

1.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第10题,文科数学第10题]

已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H.设四面体EFGH的表面积为T,则等于()

A.B.C.D.

2.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第16题,文科数学第16题]

已知a、b为不垂直的异面直线,是一个平面,则a、b在上的射影有可能是.

①两条平行直线②两条互相垂直的直线

③同一条直线④一条直线及其外一点

在一面结论中,正确结论的编号是(写出所有正确结论的编号).

3.[2004年全国高考(四川云南吉林黑龙江)文科数学第6题]

正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()

A.75°B.60°C.45°D.30°

4.[2004年全国高考(四川云南吉林黑龙江)理科数学第7题,文科数学第10题]

已知球O的半径为1,A、B、C三点都在球面上,且每两点间的球面距离均为,则

球心O到平面ABC的距离为()

A.B.C.D.

5.[2004年全国高考(四川云南吉林黑龙江)理科数学第16题,文科数学第16题]

下面是关于四棱柱的四个命题:

①若有两个侧面垂直于底面,则该四棱柱为直四棱柱

②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱

③若四个侧面两两全等,则该四棱柱为直四棱柱

④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱

其中,真命题的编号是(写出所有正确结论的编号).

6.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第9题,文科数学第10题]

正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为()

A.B.C.D.

7.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第13题,文科数学第14题]

用平面截半径为的球,如果球心到平面的距离为,那么截得小圆的面积与球的表面积的比值为.

8.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第3题]

正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为()

A.B.C.D.

9.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第7题]

对于直线m、n和平面,下面命题中的真命题是()

A.如果、n是异面直线,那么

B.如果、n是异面直线,那么相交

C.如果、n共面,那么

D.如果、n共面,那么

10.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第11题]

已知球的表面积为20,球面上有A、B、C三点.如果AB=AC=BC=2,则球心到平

面ABC的距离为()

A.1B.C.D.2

11.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第10题]

已知球的表面积为20π,球面上有A、B、C三点.如果AB=AC=2,BC=,则球心

到平面ABC的距离为()

A.1B.C.D.2

12.(2004年北京高考·理工第3题,文史第3题)

设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,,则

②若,,,则

③若,,则

④若,,则

其中正确命题的序号是

A. ①和②B. ②和③C. ③和④D. ①和④

13.(2004年北京高考·理工第4题,文史第6题)

如图,在正方体中,P是侧面内一动点,若P到直线BC与直线的距离相等,则动点P的轨迹所在的曲线是

A. 直线B. 圆C. 双曲线D. 抛物线

14.(2004年北京高考·理工第11题,文史第12题)

某地球仪上北纬纬线的长度为,该地球仪的半径是__________cm,

表面积是______________cm2

15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题,满分12分]

如图,已知四棱锥 P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.

(I)求点P到平面ABCD的距离;

(II)求面APB与面CPB所成二面角的大小.

16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题,满分12分]

如图,直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=1,CB=,侧棱AA1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.

(Ⅰ)求证CD⊥平面BDM;

(Ⅱ)求面B1BD与面CBD所成二面角的大小.

17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题,满分12分]

三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3,

(1)求证:AB ⊥ BC;

(2,理科)设AB=BC=,求AC与平面PBC所成角的大小.

(2,文科) 如果AB=BC=,求侧面PBC与侧面PAC所成二面角的大小.

18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题,本小题满分12分]

如图,四棱锥P—ABCD中,底面ABCD 为矩形,AB=8,AD=4,侧面PAD为等边三角形,并且与底面所成二面角为60°.

(Ⅰ)求四棱锥P—ABCD的体积;

(Ⅱ)证明PA⊥BD.

19.(2004年北京高考·文史第16题,本小题满分14分)

如图,在正三棱柱中,AB=2,,由顶点B沿棱柱侧面经过棱到顶点的最短路线与的交点记为M,求:

(I)三棱柱的侧面展开图的对角线长

(II)该最短路线的长及的值

(III)平面与平面ABC所成二面角(锐角)的大小

20.(2004年北京高考·理工第16题,本小题满分14分)

如图,在正三棱柱中,AB=3,,M为的中点,P是BC上一点,且由P沿棱柱侧面经过棱到M的最短路线长为,设这条最短路线与的交点为N,求:

(I)该三棱柱的侧面展开图的对角线长

(II)PC和NC的长

(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)

参考答案

1.A2.①②④3.C4.B5.②④6.C7.8.A9.C

10.A11.A12.A13.D14.

15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题]

本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.

(I)解:如图,作PO⊥平面ABCD,垂足为点O.连结OB、OA、OD、OB与AD交于点E,连结PE.

∵AD⊥PB,∴AD⊥OB,

∵PA=PD,∴OA=OD,

于是OB平分AD,点E为AD的中点,所以PE⊥AD.

由此知∠PEB为面PAD与面ABCD所成二面角的平面角,

∴∠PEB=120°,∠PEO=60°

由已知可求得PE=

∴PO=PE·sin60°=,

即点P到平面ABCD的距离为.

(II)解法一:如图建立直角坐标系,其中O为坐标原点,x轴平行于DA.

.连结AG.

又知由此得到:

所以

等于所求二面角的平面角,

于是

所以所求二面角的大小为.

解法二:如图,取PB的中点G,PC的中点F,连结EG、AG、GF,则AG⊥PB,FG//BC,FG=BC.

∵AD⊥PB,∴BC⊥PB,FG⊥PB,

∴∠AGF是所求二面角的平面角.

∵AD⊥面POB,∴AD⊥EG.

又∵PE=BE,∴EG⊥PB,且∠PEG=60°.

在Rt△PEG中,EG=PE·cos60°=.

在Rt△PEG中,EG=AD=1.

于是tan∠GAE==,

又∠AGF=π-∠GAE.

所以所求二面角的大小为π-arctan.

16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题]

本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力.

满分12分.

解法一:(Ⅰ)如图,连结CA1、AC1、CM,则CA1=

∵CB=CA1=,∴△CBA1为等腰三角形,

又知D为其底边A1B的中点,

∴CD⊥A1B.∵A1C1=1,C1B1=,∴A1B1=

又BB1=1,A1B=2. ∵△A1CB为直角三角形,D为A1B的中点,

∴CD=A1B=1,CD=CC1,又DM=AC1=,DM=C1M.

∴△CDM≌△CC1M,∠CDM=∠CC1M=90°,即CD⊥DM.

因为A1B、DM为平在BDM内两条相交直线,所以CD⊥平面BDM.

(Ⅱ)设F、G分别为BC、BD的中点,连结B1G、FG、B1F,则FG//CD,FG=CD.

∴FG=,FG⊥BD.

由侧面矩形BB1A1A的对角线的交点为D知BD=B1D=A1B=1,

所以△BB1D是边长为1的正三角形.

于是B1G⊥BD,B1G=∴∠B1GF是所求二面角的平面角,

又 B1F2=B1B2+BF2=1+(=,

即所求二面角的大小为

解法二:如图,以C为原点建立坐标系.

(Ⅰ)B(,0,0),B1(,1,0),A1(0,1,1),

D(,M(,1,0),

则∴CD⊥A1B,CD⊥DM.

因为A1B、DM为平面BDM内两条相交直线,所以CD⊥平面BDM.

(Ⅱ)设BD中点为G,连结B1G,则

G(),、、),

所以所求的二面角等于

17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题]

本小题主要考查两个平面垂直的性质、直线与平面所成角等有关知识,以及逻辑思维能力和空间想象能力.满分12分.

(Ⅰ)证明:如图1,取AC中点D,连结PD、BD.

因为PA=PC,所以PD⊥AC,又已知面PAC⊥面ABC,

所以PD⊥面ABC,D为垂足.

因为PA=PB=PC,所以DA=DB=DC,

可知AC为△ABC的外接圆直径,因此AB⊥BC.

(Ⅱ,理科)解:如图2,作CF⊥PB于F,连结AF、DF.

因为△PBC≌△PBA,所以AF⊥PB,AF=CF.

因此,PB⊥平面AFC,

所以面AFC⊥面PBC,交线是CF,

因此直线AC在平面PBC内的射影为直线CF,

∠ACF为AC与平面PBC所成的角.

在Rt△ABC中,AB=BC=2,所以BD=

在Rt△PDC中,DC=

在Rt△PDB中,

在Rt△FDC中,所以∠ACF=30°.

即AC与平面PBC所成角为30°.

(2,文科)解:因为AB=BC,D为AC中点,所以BD⊥AC.

又面PAC⊥面ABC,

所以BD⊥平面PAC,D为垂足.

作BE⊥PC于E,连结DE,

因为DE为BE在平面PAC内的射影,

所以DE⊥PC,∠BED为所求二面角的平面角.

在Rt△ABC中,AB=BC=,所以BD=.

在Rt△PDC中,PC=3,DC=,PD=,

所以

因此,在Rt△BDE中,,

所以侧面PBC与侧面PAC所成的二面角为60°.

18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题]

本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析

问题能力.满分12分

解:(Ⅰ)如图1,取AD的中点E,连结PE,则PE⊥AD.

作PO⊥平面在ABCD,垂足为O,连结OE.

根据三垂线定理的逆定理得OE⊥AD,

所以∠PEO为侧面PAD与底面所成的二面角的平面角,

由已知条件可知∠PEO=60°,PE=6,

所以PO=3,四棱锥P—ABCD的体积

VP—ABCD=

(Ⅱ)解法一:如图1,以O为原点建立空间直角坐标系.通过计算可得

P(0,0,3),A(2,-3,0),B(2,5,0),D(-2,-3,0)

所以

因为所以PA⊥BD.

解法二:如图2,连结AO,延长AO交BD于点F.通过计算可得EO=3,AE=2,

又知AD=4,AB=8,

所以Rt△AEO∽Rt△BAD.

得∠EAO=∠ABD.

所以∠EAO+∠ADF=90°

所以AF⊥BD.

因为直线AF为直线PA在平面ABCD 内的身影,所以PA⊥BD.

19.(2004年北京高考·文史第16题,本小题满分14分)

本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。

解:(I)正三棱柱的侧面展开图是长为6,宽为2的矩形

其对角线长为

(II)如图,将侧面绕棱旋转使其与侧面在同一平面上,点B运动到点D的位置,连接交于M,则就是由顶点B沿棱柱侧面经过棱到顶点C1的最短路线,其长为

(III)连接DB,,则DB就是平面与平面ABC的交线

在中

由三垂线定理得

就是平面与平面ABC所成二面角的平面角(锐角)

侧面是正方形

故平面与平面ABC所成的二面角(锐角)为

20.(2004年北京高考·理工第16题)

本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。

解:(I)正三棱柱的侧面展开图是一个长为9,宽为4的矩形,其对角线长为

(II)如图1,将侧面绕棱旋转使其与侧成在同一平面上,点P运动到点的位置,连接,则就是由点P沿棱柱侧面经过棱到点M的最短路线

设,则,在中,由勾股定理得

求得

(III)如图2,连结,则就是平面NMP与平面ABC的交线,作于H,又平面ABC,连结CH,由三垂线定理得,

就是平面NMP与平面ABC所成二面角的平面角(锐角)

在中,

在中,

故平面NMP与平面ABC所成二面角(锐角)的大小为

忘了图什么样了但大体过程我还想着,可能描述的不是很明白。题做过去很久了。 圆移动后那个圆心角对应的弧长等于2,看看图就能看出来。 α=l/r =2/1=2。 所以圆心角的弧度是2,再做过圆心平行于X轴的辅助线,那么上面那个小角的度数是(2-π/2),则P点的横坐标是2-cos(2-π2)化简得横坐标是2-sin2, 纵坐标是1+sin(2-π2)化简得纵坐标是1-cos2。 答案就是(2-sin2,1-cos2)

文章标签: # 数学 # 平面 # 高考