您现在的位置是: 首页 > 教育改革 教育改革

2019高考答案数学文,2019高考数学文科

tamoadmin 2024-05-19 人已围观

简介1.2019年山东高考数学难度解析及数学试卷答案点评(word文字版下载)四川高考数学试卷答案点评和难度解析 高考四川卷数学学科的命题,遵循《考试大纲》及《考试说明(四川卷)》要求,继承近年来形成的命题传统,结合全省实施中学数学教学实际,体现课程改革理念,坚持平稳推进、适度创新,在充分考查基础知识、基本方法的同时,深化能力立意,注重考查考生的运算求解、推理论证等数学能力及应用意识和创新意识,突出对

1.2019年山东高考数学难度解析及数学试卷答案点评(word文字版下载)

2019高考答案数学文,2019高考数学文科

四川高考数学试卷答案点评和难度解析

高考四川卷数学学科的命题,遵循《考试大纲》及《考试说明(四川卷)》要求,继承近年来形成的命题传统,结合全省实施中学数学教学实际,体现课程改革理念,坚持平稳推进、适度创新,在充分考查基础知识、基本方法的同时,深化能力立意,注重考查考生的运算求解、推理论证等数学能力及应用意识和创新意识,突出对数学思维、数学方法和数学素养的考查。试题命制立足于学科核心和主干,重点考查支撑数学学科体系的内容,将知识、能力和素质的考查融为一体,通过适度联系与综合等方式,在知识交汇处考查学生的数学视野、探究意识和学习潜能,充分体现数学的科学价值和人文价值。试题难度设置符合高中学生数学学习现状与高考性质,试卷布局合理、问题设计科学、试题表述规范,有利于准确测试不同层次考生的学习水平。

强化主干内容,重视教材价值

全卷重视基础知识的全面考查,所涉及的知识点覆盖了整个高中数学的所有知识板块;试题突出主干知识的重点考查,对高中数学中的函数与导数、三角函数、概率统计、解析几何、立体几何、数列、向量、不等式等进行了重点考查。理科3,9,12,15,16,19,21,文科3,13,15,17,19,21等题,全面考查函数概念、性质等基础知识,考查考生掌握函数这一核心内容相关方法及思维水平的现状;理科10,14,20,文科9,10,11,20等题,考查直线、圆、圆锥曲线的方程及其简单应用,是解析几何的基础和主体内容;理科8,文理科18等题,考查基本的线面关系(理科包括面面夹角的计算);理科17,文科16等题,考查了概率统计的相关知识。这样的内容设计,对高中毕业生的数学基础和素养进行了重点测试,重视对基础知识和通性通法的考查,保证了试卷的内容效度,有利于引导高中数学教学在注重基础知识的同时突出核心和主干、回归数学本质。

试题与教材联系紧密,不少题目都有教材背景,有的则直接由教材的例题或习题改编。理科1-6,8,9,11-13,16,18,21,文科1-3,5-8,11-13,16-18,20,21等题源于教材、高于教材,充分发挥了教材的示范作用。这种立足于教材编拟高考试题的理念和方法,充分保障了试题背景的公平性,对中学数学教学回归教材、重视挖掘教材价值、减轻过重的学业负担、实施素质教育、促进课程改革的深化具有良好的导向作用。

2019年山东高考数学难度解析及数学试卷答案点评(word文字版下载)

试题与答案

数学试题(文科)

第Ⅰ卷 选择题(共50分)

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)

1.已知集合 , ,则 =( A )

A. B.

C. D.

2.若复数 ( , 为虚数单位位)是纯虚数,则实数 的值为( )

A.6 B.-2 C.4 D.-6

3.已知 ,则“ ”是“ ”的 ( B )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

4.已知点P(x,y)在不等式组 表示的平面区域上运动,

则z=x-y的取值范围是( )

A.[-2,-1] B.[-1,2] C.[-2,1] D.[1,2]

5.双曲线 的离心率为2,有一个焦点与抛物线 的焦点重合,则mn的值为( )

A. B. C. D.

一年级 二年级 三年级

女生 373

男生 377 370

6.某校共有学生2000名,各年级男、女生人数如表所示.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的

学生人数为( )

A.24 B.18 C.16 D.12

7.平面向量 =( )

A.1 B.2 C.3 D.

8.在等差数列 中,已知 ,那么 的值为( )

A.-30 B.15 C.-60 D.-15

9.设 、 为两个不同的平面,l、m为两条不同的直线,且l ,m ,有如下的两个命题:①若 ‖ ,则l‖m;②若l⊥m,则 ⊥ .那么( )

A.①是真命题,②是假命题 B.①是假命题,②是真命题

C.①②都是真命题 D.①②都是假命题

10.已知一个几何体的三视图如所示,则该几何体的体积为( )

A.6 B.5.5

C.5 D.4.5

第Ⅱ卷 非选择题(共100分)

二、填空题:本大题共7小题,考生作答5小题,每小题5分,满分25分.

(一)必做题(11~14题)

11.已知 ,且 是第二象限的角,

则 ___________.

12.执行右边的程序框图,若 =12, 则输

出的 = ;

13.函数 若

则 的值为: ;

14.圆 上的点到直线 的最大距离与最小距离之差是: _____________.

(二)选做题(15~17题,考生只能从中选做一题)

15.(选修4—4坐标系与参数方程)曲线 与曲线 的位置关系是: (填“相交”、 “相切”或“相离”) ;

16.(选修4—5 不等式选讲)不等式 的解集是: ;

17.(选修4—1 几何证明选讲)已知 是圆 的切线,切点为 , . 是圆 的直径, 与圆 交于点 , ,则圆 的半径 .

三、解答题:解答应写出文字说明,证明过程或演算步骤(本答题共6小题,共75分)

18.(本小题12分)

已知向量 , ,设 .

(1).求 的值;

(2).当 时,求函数 的值域。

19.(本小题12分)

已知函数 .

(1)若 从集合 中任取一个元素, 从集合 中任取一个元素,

求方程 有两个不相等实根的概率;

(2)若 从区间 中任取一个数, 从区间 中任取一个数,求方程 没有实根的概率.

20.(本小题12分)

在平面直角坐标系xoy中,已知四点 A(2,0), B(-2,0), C(0,-2),D(-2,-2),把坐标系平面沿y轴折为直二面角.

(1)求证:BC⊥AD;

(2)求三棱锥C—AOD的体积.

21.(本小题12分)

已知数列 的前n项和为 , 且满足 ,

(1) 求 的值;

(2) 求证:数列 是等比数列;

(3) 若 , 求数列 的前n项和 .

22、(本小题13分)

已知函数 在点 处的切线方程为 .

(1)求 的值;

(2)求函数 的单调区间;

(3)求函数 的值域.

23.(本小题14分)已知椭圆 两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足 =1,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.

(1)求P点坐标;

(2)求直线AB的斜率;

(3)求△PAB面积的最大值.

文科数学参考答案与评分标准

一、选择题:

A卷选择题答案

题号 1 2 3 4 5 6 7 8 9 10

答案 A D A B D C B A D C

B卷选择题答案

题号 1 2 3 4 5 6 7 8 9 10

答案

二、填空题:

(一)必做题

11. ; 12.4.; 13.1或 ; 14. .

(二)选做题

15.相交;16. ;17. .

三、解答题:

18.解: =

=

= ……………………………………(4分)

(1)

= …………………………(8分)

(2)当 时, ,

∴ ………………………(12分)

19.解:(1)a取集合{0,1,2,3}中任一元素,b取集合{0,1,2}中任一元素

∴a、b的取值情况有(0,0),(0,1)(0,2)(1,0)(1,1)(1,2)(2,0),

(2,1),(2,2),(3,0)(3,1)(3,2)其中第一个数表示a的取值,第二个数表示b的取值,基本事件总数为12.

设“方程 有两个不相等的实根”为事件A,

当 时方程 有两个不相等实根的充要条件为

当 时, 的取值有(1,0)(2,0)(2,1)(3,0)(3,1)(3,2)

即A包含的基本事件数为6.

∴方程 有两个不相等的实根的概率

……………………………………………………(6分)

(2)∵a从区间〔0,2〕中任取一个数,b从区间〔0,3〕中任取一个数

则试验的全部结果构成区域

这是一个矩形区域,其面积

设“方程 没有实根”为事件B

则事件B构成的区域为

即图中阴影部分的梯形,其面积

由几何概型的概率计算公式可得方程 没有实根的概率

………………………………………………(12分)

20.解法一:(1)∵BOCD为正方形,

∴BC⊥OD, ∠AOB为二面角B-CO-A的平面角

∴AO⊥BO ∵AO⊥CO 且BO∩CO=O

∴AO⊥平面BCO 又∵

∴AO⊥BC 且DO∩AO=O ∴BC⊥平面ADO

∴BC⊥AD …………(6分)

(2) …………………………(12分)

21.解:(1)因为 ,令 , 解得 ……1分

再分别令 ,解得 ……………………………3分

(2)因为 ,

所以 ,

两个代数式相减得到 ……………………………5分

所以 ,

又因为 ,所以 构成首项为2, 公比为2的等比数列…7分

(3)因为 构成首项为2, 公比为2的等比数列

所以 ,所以 ……………………………8分

因为 ,所以

所以

因此 ……………………………11分

所以 ………………………12分

22.解:(1)

∵ 在点 处的切线方程为 .

∴ …………………………(5)

(2)由(1)知: ,

x

2

+ 0 — 0 +

极大

极小

∴ 的单调递增区间是: 和

的单调递减区间是: ………………………………(9)

(3)由(2)知:当x= -1时, 取最小值

当x= 2时, 取最大值

且当 时, ;又当x<0时, ,

所以 的值域为 ………………………………………(13)

23.解:(1) , ,设

则 ,

又 , ,∴ ,即所求 ……(5分)

(2)设 : 联立

得:

∵ ,∴ ,

同理 , ∴ ……(10分)

(3)设 : ,联立

,得: ,∴

∴|AB|=

∴S=

当且仅当m=±2时等号成立。…………………………………(14分)

核心提示:十字路口的“高考考点禁止鸣笛”分外醒目,身着荧光色的警察表情严肃,救护车到位,警车到位,家长们都在考点外候着。这便是青岛新东方学校老师们送考考点的一幕。经历了上午的语文考试,下午的考生和家长更显从容不迫。那下午的数学考试试题难度如何呢?

青岛新东方学校高中数学教研组

十字路口的“高考考点禁止鸣笛”分外醒目,身着荧光色的警察表情严肃,救护车到位,警车到位,家长们都在考点外候着。这便是青岛新东方学校老师们送考考点的一幕。经历了上午的语文考试,下午的考生和家长更显从容不迫。那下午的数学考试试题难度如何呢?

今年的数学试题,难度与去年相差不大。先看选择题,依次考察了集合的基本运算、复数的基本运算、三角函数图像的平移变换、求已知夹角和模长求向量的数量积、含绝对值的不等式解法、含参数的一元二次不等式组与简单的线性规划、立体几何求旋转体的体积、正态分布、直线与圆的位置关系、函数的综合考查;根据我们过去一年在高考班里练过的类型看,几乎全部是常练题型,没有生僻题型,题目难度以中低难度题目为主,最后一个选择属于中难题目。这里知识点的考查相对全面,都是平时练过的题目,没有新题,比较值得一提的是,选择题的第8题考查了理科生单独学的正态分布知识,这是山东自2005年自主命题以来继2010年之后第二次考查正态分布这个知识点,因此也对未参加高考的学生提个醒:只要是考纲要求的内容,不管平时是否常考,都应该不打折扣的学会和记住,学习上不能有投机心理,只要平时基本功做扎实了,加上考场内有稳定沉着的心态,对大部分考生而言,选择题不应该有明显失分。

文章标签: # 考查 # 数学 # 已知