您现在的位置是: 首页 > 教育改革 教育改革
2017高考福建数学卷-2017年福建高考数学卷
tamoadmin 2024-09-11 人已围观
简介1.2017年高考全国各省市使用什么考卷2.2017年全国2卷历史难度3.2017年数学高考卷子的六道大题2017年高考全国各省市使用什么考卷2017年高考全国各省市所用考卷:全国Ⅰ卷地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建全国Ⅱ卷地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆全国Ⅲ卷地区:云南、广西、贵州、四川完全自主命题省份 :江苏、北京、天津部分
1.2017年高考全国各省市使用什么考卷
2.2017年全国2卷历史难度
3.2017年数学高考卷子的六道大题
2017年高考全国各省市使用什么考卷
2017年高考全国各省市所用考卷:
全国Ⅰ卷地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建
全国Ⅱ卷地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆
全国Ⅲ卷地区:云南、广西、贵州、四川
完全自主命题省份 :江苏、北京、天津
部分使用全国卷省份 :
海南省:全国Ⅱ卷(语、数、英) 单独命题(政、史、地、物、化、生)
山东卷:全国Ⅰ卷(外语、文综、理综) 自主命题(语文、文数、理数)
2017年考试改革地区 :
高考改革地区:浙江、上海
考试模式:3 3,不分文理科
必考科目:语文、数学、外语,每科150分
改革后的考试具体安排如下:
外语考试:
浙江每年2次,6月和10月;
上海每年2次,1月和6月
选考科目:
浙江实行7选3,每科满分100分:思想政治、历史、地理、物理、化学、生物、信息技术(特别说明:浙江省的选考科目考试次数为2次,分别在4月和10月,外语和选考成绩2年有效。)
上海实行6选3,每科满分70分,思想政治、历史、地理、物理、化学、生命科学 。
录取方式 :
浙江
1.高考录取不分批次;
2.“专业 学校”平行志愿,按专业平行投档。
上海
1.合并本科第一、二招生批次。
2.“总分 志愿”,分学校实行平行志愿投档和录取。
2017年高考除浙江、上海因实行高考改革变化较大外,全国其他地区保持稳定,考试模式仍与2016年保持一致。
高考,一般指高等教育入学考试,现有普通高校招生考试、自学考试和成人高考三种形式。高考是考生选择大学和进入大学的资格标准,也是国家教育考试之一。
高考由教育部统一组织调度,教育部或实行自主命题的省级考试院(考试局)命题。每年6月7日、6月8日为考试日,部分省区高考时间为3天。高考成绩直接影响所能进入的大学层次,考上一本大学的核心前提就是取得优异的高考成绩。
2015年起,高考将取消体育特长生、奥赛等6项加分项目。2016年,全国940万考生参加高考。
2017年,高考全国卷考试内容调整加重对传统文化考查。全国有940万考生要参加2017高考。从6月22日开始,全国各地的高考成绩陆续出炉。2017年10月19日,教育部部长陈宝生表示,到2020年,我国将全面建立起新的高考制度。
2017年全国2卷历史难度
2017年文科全国二卷的考生们,你们觉得今年的考试怎么样?各科难度
120路过。
。嗯其实也算中规中举吧,数学前面一马平川过来了到了圆锥曲线直接卡住。
。后面两个大题+选修就只答上了第一个问,然后前面几何第二个问算数算错了。
整体来说得140+高分不容易,130是很容易的,本人也是属于基础型选手,相比于去年2卷感觉难了一丢丢吧(主要还是后面的大题太卡人了),现在复读了,重新回顾了一下高考卷(之前从来不学导数第二个问的因为怕浪费时间,现在复读了专心攻克一下),发现其实不是很难,只是不知道解题方法(就如导数第二个问二次求导+洛必达法则就可以轻松解决了),整体来说要比模拟考拿分容易一些(模拟考12题和16题是压轴题稍微难一些 17年二卷选择填空没有压轴题),我之前模拟考一般都是100-110左右,这就是数学吧,现在趋势感觉数学不会偏难出太多题了都是中规的多一些。文综是我弱项(尤其是地理政治,基本不咋背),高考170+,选择对的比较多,历史二卷答得比较好(没有什么难题,论述题写钟表也很好写),英语超级弱项,只考了90+,就不多评述了,现在英语整体110+,感觉还是背单词的功劳,语文也是大弱项90+,作文比较恶心立意多角度,好找但是不好写,不如任务驱动类好写 希望楼主给个好评,一字一字码出来的。
2017年高考全国二卷数学难吗?对于全国二卷地区的考生来说
LZ您好
全国卷2本来就不是难卷,且2017年的全国卷2的难度"歪了"
歪的地方是题目不算新,计算量挺大(第18题概率论与数理统计的大题,并且位置靠前,后面大题不难但是做完这题心态容易崩)
所以有一定计算量训练的学生这张卷应该很轻松
基础选择填空完全在比简单题用时。
可能拉分的题:
选择题最后一题建立坐标系进行向量计算,立刻天就蓝了。结果还是考计算量!
填空倒数第二题是裂项
填空最后一题画完图结果还是变成计算题。
三角大题是基础.
圆锥曲线和立体几何大题也是思路送分,看你认不认真计算.
压轴导数题算不得难但是(1)须有极限思想;(2)是分类讨论,存在唯一极大值点被你证明好了这题也结束了.
坐标系与参数方程选修题有积化和差的技巧。不等式的那个选修题也是套路,但是是证明题,所以难度比坐标系题要难。
所以这张卷子,真心难度不大,问做题认真不认真,计算量稍微偏大而已.
今年的高考全国二卷难度较2017年相比如何,重本线较2017年相比会我认为难度都没多大变化,因为全国二卷都适中,题型也差不多。今年的全国二卷语文比2017年语文阅读量加大,数学则没太大变化主要以中档题为主,英语,文综,理综和2017比没多大变化。都是考虑中等学生,难度没多大改变。我认为今年的重本线应该上升,因为今年考生比2017年多,而且重本线近几年都有上升趋势。
2017海南卷与全国二卷的区别1、2016年高考,广东、河北、河南、山西、江西、湖南、湖北、福建、安徽9省将使用 "全国卷 新课标卷 乙卷
2016年普通高考全国卷将命制甲、乙、丙三类试卷(海南卷除外,仍由国家考试中心为海南省单独命制)。
在2015年甲卷(全国II卷)、乙卷(全国I卷)的基础上,新增丙卷。
丙卷与甲卷(全国II卷)在试卷结构上相同、难度相当。
2016年,重庆和四川、广西、陕西考生将使用丙卷。其他省份还保持原来的甲卷(全国II卷)与乙卷(全国I卷)使用情况不变。
2、2016高考使用全国甲卷省份:贵州 甘肃 青海 *** 黑龙江 吉林 宁夏 内蒙古 新疆 云南 辽宁
2016年高考使用全国乙卷省份:河南 河北 山西 湖北 江西 湖南 广东 福建、安徽 、山东(英语、综合)
2018年高考增加使用全国乙卷省份:山东(语文,数学)
2016年高考使用全国丙卷省份:重庆、四川、广西、陕西。
单独命题 海南(语文、数学、英语使用全国甲卷,政治、历史、地理、化学、生物为考试中心命题。)
2018年2016年全国二卷试题难度比较(全部科目)要看你所在的省份,把全国各省份情况列举如下北京市:所有科目全部自主命题天津市:所有科目全部自主命题上海市:所有科目全部自主命题山东省:自主命题(语、数。
PS:语文数学在2018将用新课标Ⅰ卷)+新课标Ⅰ卷(综合(2016)、英)广东省:英语听说考试由广东省自主命题(其余部分和其他科目均用新课标Ⅰ卷) 江苏省:所有科目全部自主命题浙江省:所有科目全部自主命题,英语听力使用全国英语等级考试二级听力;2017年起英语使用全国卷 ,2019年起所有科目使用全国II卷四川省:自主命题(数、英、理综)+新课标Ⅲ卷(语、文综),2017年起全部使用全国III卷福建省:2016年起全部使用全国I卷,2019年起使用全国II卷湖北省:2016年起全部使用全国I卷湖南省:2016年起全部使用全国I卷海南省:自主命题(政、史、地、理、化、生)+新课标Ⅱ卷(语、数、英)。
2017年数学高考卷子的六道大题
17.(12分)
△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长
18.(12分)
如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.
19.(12分)
为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ?).
(1)设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网
(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95
10.12
9.96
9.96
10.01
9.92
9.98
10.04
10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95
经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.9?4,0.9?416≈0.959?2,.
20.(12分)
已知椭圆C:x?/a?+y?/b?=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
21.(12分)
已知函数=ae?^x+(a﹣2)e^x﹣x.
(1)?讨论的单调性;
(2)?若有两个零点,求a的取值范围.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4-4,坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.
(1)若a=-1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为,求a.
23.[选修4—5:不等式选讲](10分)
已知函数f(x)=–x?+ax+4,g(x)=│x+1│+│x–1│.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.