您现在的位置是: 首页 > 教育改革 教育改革
高考文科数学公式,文科数学公式高中
tamoadmin 2024-07-09 人已围观
简介1.求高中数学公式大全,符号要清晰2.高中文科数学对数公式3.高三文科函数的重点是什么?高三的数学怎么学?4.文科数学常用的三角函数公式5.2017高中数学面积体积公式考试要点:自己整理一至六为文科类范围,一至十七为理科类范围一.方程式和不等式1.数和式:①实数 ②式的展开和因式分解2.一次不等式3.二次方程式二.二次函数1.二次函数和图像2.二次函数的值的变化:①二次函数的最大值、最小值 ②二次
1.求高中数学公式大全,符号要清晰
2.高中文科数学对数公式
3.高三文科函数的重点是什么?高三的数学怎么学?
4.文科数学常用的三角函数公式
5.2017高中数学面积体积公式
考试要点:自己整理
一至六为文科类范围,一至十七为理科类范围
一.方程式和不等式
1.数和式:①实数 ②式的展开和因式分解
2.一次不等式
3.二次方程式
二.二次函数
1.二次函数和图像
2.二次函数的值的变化:①二次函数的最大值、最小值 ②二次不等式
三.图形与计算
1.三角比(三角形内边与角的关系): ①正弦、余弦、正切 ②三角比间的相互关系
2.三角比和图形:①正弦定理、余弦定理 ②图形的计算(解三角形)
四.平面图形
1.三角形的性质
2.圆的性质
五.集合与简易逻辑
1.集合与元素的个数
2.命题与证明
六.排列组合与概率
1.排列与组合
2.概率的基本法则
3.独立试验与概率
七.式与证明、高次方程式
1.式与证明:①整式的除法,分数式 ②等式与不等式的证明
2.高次方程式:①复数与二次方程式 ②高次方程式
八.图形与方程式
1.点和直线:①点的坐标 ②直线的方程式
2.圆:①圆的方程式 ②圆与直线的关系
九.各种函数
1.三角函数:①一般角 ②三角函数及其基本性质 ③两角和与两角差的三角函数
2.指数函数与对数函数:①指数概念的扩展 ②指数函数 ③对数函数
十.微积分初步
1.微分的思维方式:①微分系数与导函数 ②导函数的应用:切线、函数值的增减
2.积分的思维方式:①不定积分与定积分 ②面积
十一.数列
1.数列与数列的和:①等差数列与等比数列 ②各种各样的数列
2.递推公式与数学归纳法:①递推公式与数列 ②数学归纳法
十二.向量
1.平面向量:①平面上的向量及其计算 ②向量的数量积(或内积、点积)
2.空间坐标和向量:空间坐标、空间向量
十三.极限
1.数列的极限:①数列 的极限 ②无限等比级数的和
2.函数及其极限:①复合函数与逆函数 ②函数值的极限
十四.微分法
1.导函数:①函数的和、差、积、商的导函数 ②复合函数的导函数
③三角函数、指数函数、对数函数的导函数
2.导函数的应用:切线、函数值的增减、速度、加速度
十五.积分法
1.不定积分与定积分:①积分及其基本性质 ②换元积分法及分部积分法
③各种各样函数的积分
2.积分的应用:面积、体积
十六.矩阵及其应用
1.矩阵:①矩阵及其运算:和、差、实数倍。②矩阵的积与逆矩阵
2.矩阵的应用:①联立一次方程式。②点的移动
十七.式与曲线
1.二次曲线: ①抛物线。②椭圆与双曲线
2.曲线的参数方程
求高中数学公式大全,符号要清晰
y=kx+b,y-y·=k(x-x·),x/a+y/b=1 (其中a为x的截距,b为y的截距),Ax+By+C=0,若P1平行于P2,则x1y2-x2y1=0,若P1垂直于P2,则x1x2+y1y2=0。
高中文科数学对数公式
大写 小写 英文注音 国际音标注音 中文注音Α α alpha alfa 阿耳法Β β beta beta 贝塔Γ γ gamma gamma 伽马Δ δ deta delta 德耳塔Ε ε epsilon epsilon 艾普西隆Ζ ζ zeta zeta 截塔Η η eta eta 艾塔Θ θ theta θita 西塔Ι ι iota iota 约塔Κ κ kappa kappa 卡帕∧ λ lambda lambda 兰姆达Μ μ mu miu 缪Ν ν nu niu 纽Ξ ξ xi ksi 可塞Ο ο omicron omikron 奥密可戎∏ π pi pai 派Ρ ρ rho rou 柔∑ σ sigma sigma 西格马Τ τ tau tau 套Υ υ upsilon jupsilon 衣普西隆Φ φ phi fai 斐Χ χ chi khai 喜Ψ ψ psi psai 普西Ω ω omega omiga 欧米伽符号表符号 含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同 a^xlogba 以b为底a的对数; blogba = acos x 在自变量x处余弦函数的值tan x 其值等于 sin x/cos xcot x 余切函数的值或 cos x/sin xsec x 正割含数的值,其值等于 1/cos xcsc x 余割函数的值,其值等于 1/sin xasin x y,正弦函数反函数在x处的值,即 x = sin yacos x y,余弦函数反函数在x处的值,即 x = cos yatan x y,正切函数反函数在x处的值,即 x = tan yacot x y,余切函数反函数在x处的值,即 x = cot yasec x y,正割函数反函数在x处的值,即 x = sec yacsc x y,余割函数反函数在x处的值,即 x = csc yθ 角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a?b a、b向量的点积(a?b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值∑ 表示求和,通常是某项指数。下边界值写在其下部,上边界值写在其上部。如j从1到100的和可以表示成: 。这表示 1 + 2 + … + nM 表示一个矩阵或数列或其它|v> 列向量,即元素被写成列或可被看成k×1阶矩阵的向量<v| 被写成行或可被看成从1×k阶矩阵的向量dx 变量x的一个无穷小变化,dy, dz, dr等类似ds 长度的微小变化ρ 变量 (x2 + y2 + z2)1/2 或球面坐标系中到原点的距离r 变量 (x2 + y2)1/2 或三维空间或极坐标中到z轴的距离|M| 矩阵M的行列式,其值是矩阵的行和列决定的平行区域的面积或体积||M|| 矩阵M的行列式的值,为一个面积、体积或超体积det M M的行列式M-1 矩阵M的逆矩阵v×w 向量v和w的向量积或叉积θvw 向量v和w之间的夹角A?B×C 标量三重积,以A、B、C为列的矩阵的行列式uw 在向量w方向上的单位向量,即 w/|w|df 函数f的微小变化,足够小以至适合于所有相关函数的线性近似df/dx f关于x的导数,同时也是f的线性近似斜率f ' 函数f关于相应自变量的导数,自变量通常为x?f/?x y、z固定时f关于x的偏导数。通常f关于某变量q的偏导数为当其它几个变量固定时df与dq的比值。任何可能导致变量混淆的地方都应明确地表述(?f/?x)|r,z 保持r和z不变时,f关于x的偏导数grad f 元素分别为f关于x、y、z偏导数 [(?f/?x), (?f/?y), (?f/?z)] 或 (?f/?x)i + (?f/?y)j + (?f/?z)k; 的向量场,称为f的梯度? 向量算子(?/?x)i + (?/?x)j + (?/?x)k, 读作 "del"?f f的梯度;它和 uw 的点积为f在w方向上的方向导数?w 向量场w的散度,为向量算子? 同向量 w的点积, 或 (?wx /?x) + (?wy /?y) + (?wz /?z)curl w 向量算子 ? 同向量 w 的叉积?×w w的旋度,其元素为[(?fz /?y) - (?fy /?z), (?fx /?z) - (?fz /?x), (?fy /?x) - (?fx /?y)] 拉普拉斯微分算子: (?2/?x2) + (?/?y2) + (?/?z2)f "(x) f关于x的二阶导数,f '(x)的导数d2f/dx2 f关于x的二阶导数f(2)(x) 同样也是f关于x的二阶导数f(k)(x) f关于x的第k阶导数,f(k-1) (x)的导数T 曲线切线方向上的单位向量,如果曲线可以描述成 r(t), 则T = (dr/dt)/|dr/dt|ds 沿曲线方向距离的导数κ 曲线的曲率,单位切线向量相对曲线距离的导数的值:|dT/ds|N dT/ds投影方向单位向量,垂直于TB 平面T和N的单位法向量,即曲率的平面τ 曲线的扭率: |dB/ds|g 重力常数F 力学中力的标准符号k 弹簧的弹簧常数pi 第i个物体的动量H 物理系统的哈密尔敦函数,即位置和动量表示的能量{Q, H} Q, H的泊松括号 以一个关于x的函数的形式表达的f(x)的积分 函数f 从a到b的定积分。当f是正的且 a < b 时表示由x轴和直线y = a, y = b 及在这些直线之间的函数曲线所围起来图形的面积L(d) 相等子区间大小为d,每个子区间左端点的值为 f的黎曼和R(d) 相等子区间大小为d,每个子区间右端点的值为 f的黎曼和M(d) 相等子区间大小为d,每个子区间上的最大值为 f的黎曼和m(d) 相等子区间大小为d,每个子区间上的最小值为 f的黎曼和+:plus(positive正的)-:minus(negative负的)*:multiplied by÷:divided by=:be equal to≈:be approximately equal to():round brackets(parenthess)[]:square brackets{}:braces∵:because∴:therefore≤:less than or equal to≥:greater than or equal to∞:infinityLOGnX:logx to the base nxn:the nth power of xf(x):the function of xdx:diffrencial of xx+y:x plus y(a+b):bracket a plus b bracket closeda=b:a equals ba≠b:a isn't equal to ba>b:a is greater than ba>>b:a is much greater than ba≥b: a is greater than or equal to bx→∞:x approches infinityx2:x squarex3:x cube√ ̄x:the square root of x3√ ̄x:the cube root of x3‰:three peimilln∑i=1xi:the summation of x where x goes from 1to nn∏i=1xi:the product of x sub i where igoes from 1to n∫ab:integral betweens a and b
(1)数量符号:如 :i,2+ i,a,x,自然对数底e,圆周率 ∏。
(2)运算符号:如加号(+),减号(-),乘号(×或?),除号(÷或/),两个集合的并集(∪),交集(∩),根号( ),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。
(3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。
(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”
(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等。
符号 意义∞ 无穷大PI 圆周率|x| 函数的绝对值∪ 集合并∩ 集合交≥ 大于等于≤ 小于等于≡ 恒等于或同余ln(x) 以e为底的对数lg(x) 以10为底的对数floor(x) 上取整函数ceil(x) 下取整函数x mod y 求余数小数部分 x - floor(x)∫f(x)δx 不定积分∫[a:b]f(x)δx a到b的定积分
P为真等于1否则等于0∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况如:∑[n is prime][n < 10]f(n)∑∑[1≤i≤j≤n]n^2lim f(x) (x->?) 求极限f(z) f关于z的m阶导函数C(n:m) 组合数,n中取mP(n:m) 排列数m|n m整除nm⊥n m与n互质a ∈ A a属于集合A#A 集合A中的元素个数
大写 小写 英文注音 国际音标注音 中文注音 Α α alpha alfa 阿耳法 Β β beta beta 贝塔 Γ γ gamma gamma 伽马 Δ δ deta delta 德耳塔 Ε ε epsilon epsilon 艾普西隆 Ζ ζ zeta zeta 截塔 Η η eta eta 艾塔 Θ θ theta θita 西塔 Ι ι iota iota 约塔 Κ κ kappa kappa 卡帕 ∧ λ lambda lambda 兰姆达 Μ μ mu miu 缪 Ν ν nu niu 纽 Ξ ξ xi ksi 可塞 Ο ο omicron omikron 奥密可戎 ∏ π pi pai 派 Ρ ρ rho rou 柔 ∑ σ sigma sigma 西格马 Τ τ tau tau 套 Υ υ upsilon jupsilon 衣普西隆 Φ φ phi fai 斐 Χ χ chi khai 喜 Ψ ψ psi psai 普西 Ω ω omega omiga 欧米伽
高三文科函数的重点是什么?高三的数学怎么学?
解:高中文科数学对数公式记住这些也就差不多了
(1)g(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M)
(n∈R)
(4)log(a^n)(M)=1/nlog(a)(M)(n∈R)
(5)换底公式:log(A)M=log(b)M/log(b)A
(b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a)
证明:
设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(7)对数恒等式:a^log(a)N=N;
log(a)a^b=b
(8)由幂的对数的运算性质可得(推导公式)
1.log(a)M^(1/n)=(1/n)log(a)M
,
log(a)M^(-1/n)=(-1/n)log(a)M
2.log(a)M^(m/n)=(m/n)log(a)M
,
log(a)M^(-m/n)=(-m/n)log(a)M
3.log(a^n)M^n=log(a)M
,
log(a^n)M^m=(m/n)log(a)M
文科数学常用的三角函数公式
重点是导函数,二次函数,反函数,三角函数,指数函数和对数函数的运算,当然函数的定义域和值域也是重点。公式嘛,有这样一些了。数学公式
抛物线:y
=
ax
*+
bx
+
c
就是y等于ax
的平方加上
bx再加上
c
a
>
0时开口向上
a
<
0时开口向下
c
=
0时抛物线经过原点
b
=
0时抛物线对称轴为y轴
还有顶点式y
=
a(x+h)*
+
k
就是y等于a乘以(x+h)的平方+k
-h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)
准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px
y^2=-2px
x^2=2py
x^2=-2py
三角函数:
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/(1-tan2A)
cot2A=(cot2A-1)/2cota
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0
以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
·万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
半角公式
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA))
cot(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
cotA+cotBsin(A+B)/sinAsinB
-cotA+cotBsin(A+B)/sinAsinB
2017高中数学面积体积公式
函数名 正弦 余弦 正切 余切 正割 余割
在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有
正弦函数 sinθ=y/r
余弦函数 cosθ=x/r
正切函数 tanθ=y/x
余切函数 cotθ=x/y
正割函数 secθ=r/x
余割函数 cscθ=r/y
(斜边为r,对边为y,邻边为x。)
以及两个不常用,已趋于被淘汰的函数:
正矢函数 versinθ =1-cosθ
余矢函数 coversθ =1-sinθ
编辑本段同角三角函数间的基本关系式:
·平方关系:
sin^2(α)+cos^2(α)=1 cos^2a=(1+cos2a)/2
tan^2(α)+1=sec^2(α) sin^2a=(1-cos2a)/2
cot^2(α)+1=csc^2(α)
·积的关系:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
·倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
直角三角形ABC中,
角A的正弦值就等于角A的对边比斜边,
余弦等于角A的邻边比斜边
正切等于对边比邻边,
·三角函数恒等变形公式
·两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·三角和的三角函数:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
·辅助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
·半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
·万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx
证明:
左边=2sinx(cosx+cos2x+...+cosnx)/2sinx
=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)
=[sin(n+1)x+sinnx-sinx]/2sinx=右边
等式得证
sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx
证明:
左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)
=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)
=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边
等式得证
编辑本段三角函数的角度换算
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
编辑本段正余弦定理
正弦定理是指在一个三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .
余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA
编辑本段部分高等内容
·高等代数中三角函数的指数表示(由泰勒级数易得):
sinx=[e^(ix)-e^(-ix)]/(2i)
cosx=[e^(ix)+e^(-ix)]/2
tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]
泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…
此时三角函数定义域已推广至整个复数集。
·三角函数作为微分方程的解:
对于微分方程组 y=-y'';y=y'''',有通解Q,可证明
Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。
补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。
编辑本段特殊三角函数值
a 0` 30` 45` 60` 90`
sina 0 1/2 √2/2 √3/2 1
cosa 1 √3/2 √2/2 1/2 0
tana 0 √3/3 1 √3 None
cota None √3 1 √3/3 0
编辑本段三角函数的计算
幂级数
c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)
它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...cn...及a都是常数, 这种级数称为幂级数.
泰勒展开式(幂级数展开法):
f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...
实用幂级数:
ex = 1+x+x2/2!+x3/3!+...+xn/n!+...
ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|<1)
sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞<x<∞)
cos x = 1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+... (-∞<x<∞)
arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|<1)
arccos x = π - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... ) (|x|<1)
arctan x = x - x^3/3 + x^5/5 - ... (x≤1)
sinh x = x+x3/3!+x5/5!+...(-1)k-1*x2k-1/(2k-1)!+... (-∞<x<∞)
cosh x = 1+x2/2!+x4/4!+...(-1)k*x2k/(2k)!+... (-∞<x<∞)
arcsinh x = x - 1/2*x3/3 + 1*3/(2*4)*x5/5 - ... (|x|<1)
arctanh x = x + x^3/3 + x^5/5 + ... (|x|<1)
在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。
--------------------------------------------------------------------------------
傅立叶级数(三角级数)
f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)
a0=1/π∫(π..-π) (f(x))dx
an=1/π∫(π..-π) (f(x)cosnx)dx
bn=1/π∫(π..-π) (f(x)sinnx)dx
三角函数的数值符号
正弦 第一,二象限为正, 第三,四象限为负
余弦 第一,四象限为正 第二,三象限为负
正切 第一,三象限为正 第二,四象限为负
编辑本段三角函数定义域和值域
sin(x),cos(x)的定义域为R,值域为〔-1,1〕
tan(x)的定义域为x不等于π/2+kπ,值域为R
cot(x)的定义域为x不等于kπ,值域为R
几何题复习最重要的就是要掌握好相应的高中数学面积以及体积公式,这样才能避免在高中数学几何题中丢分。接下来我为你整理了高中数学面积体积公式,一起来记一记吧。
高中数学面积体积公式1-5
1、圆柱体:
表面积:2?Rr+2?Rh
体积:?R2h (R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:
表面积:?R2+?R[(h2+R2)的平方根]
体积: ?R2h/3 (r为圆锥体低圆半径,h为其高,
3、正方体
a-边长, S=6a2 ,
V=a3
4、长方体
a-长 ,b-宽 ,c-高 S=2(ab+ac+bc) V=abc
5、棱柱 、 S-底面积 h-高
V=Sh
高中数学面积体积公式6-10
6、棱锥
S-底面积 h-高
V=Sh/3
7、棱台
S1和S2-上、下底面积 h-高
V=h[S1+S2+(S1S2)^1/2]/3
8、拟柱体
S1-上底面积 ,S2-下底面积 ,S0-中截面积 h-高,
V=h(S1+S2+4S0)/6
9、圆柱
r-底半径 ,h-高 ,C?底面周长 S底?底面积 ,S侧?侧面积 ,S表?表面积
C=2?r
S底=?r2,
S侧=Ch ,
S表=Ch+2S底 ,
V=S底h=?r2h
10、空心圆柱
R-外圆半径 ,r-内圆半径 h-高
V=?h(R^2-r^2)
高中数学面积体积公式11-17
11、直圆锥 r-底半径 h-高
V=?r^2h/3
12、圆台
r-上底半径 ,R-下底半径 ,h-高 V=?h(R2+Rr+r2)/3
13、球
r-半径 d-直径
V=4/3?r^3=?d^3/6
14、球缺
h-球缺高,r-球半径,a-球缺底半径
V=?h(3a2+h2)/6 =?h2(3r-h)/3
15、球台
r1和r2-球台上、下底半径 h-高
V=?h[3(r12+r22)+h2]/6
16、圆环体
R-环体半径 D-环体直径 r-环体截面半径 d-环体截面直径
V=2?2Rr2 =?2Dd2/4
17、桶状体
D-桶腹直径 d-桶底直径 h-桶高
V=?h(2D2+d2)/12 ,(母线是圆弧形,圆心是桶的中心)
V=?h(2D2+Dd+3d2/4)/15 (母线是抛物线形)
猜你喜欢:
1. 2017高考数学必考公式大全
2. 高中数学曲线公式
3. 高中数学知识点总结及公式大全
4. 2017年高考必备文科数学公式
5. 高中数学公式排列组合
6. 高中数学几何公式知识