您现在的位置是: 首页 > 教育改革 教育改革

高考导数大题解题技巧,高考题导数大题答案

tamoadmin 2024-05-31 人已围观

简介1.求高中数学导数解题技巧,总是4分不给力啊2.高考数学导数解题技巧3.函数与导数解题方法知识点技巧总结4.导数的题型及解题技巧是什么?高中数学合集百度网盘下载链接:提取码:1234简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。求高中数学导数解题技巧,总是4分不给力啊三、导数1.求导法则:(c)/=0这里c是常数。即常数的导数值为0。(xn)/=nxn-1特别地:

1.求高中数学导数解题技巧,总是4分不给力啊

2.高考数学导数解题技巧

3.函数与导数解题方法知识点技巧总结

4.导数的题型及解题技巧是什么?

高考导数大题解题技巧,高考题导数大题答案

高中数学合集百度网盘下载

链接:提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

求高中数学导数解题技巧,总是4分不给力啊

三、导

1.求导法则:

(c)/=0

这里c是常数。即常数的导数值为0。

(xn)/=nxn-1

特别地:(x)/=1

(x-1)/=

(

)/=-x-2

(f(x)±g(x))/=

f/(x)±g/(x)

(k?f(x))/=

k?f/(x)

2.导数的几何物理意义:

k=f/(x0)表示过曲线y=f(x)上的点P(x0,f(x0))的切线的斜率。

V=s/(t)

表示即时速度。a=v/(t)

表示加速度。

3.导数的应用:

①求切线的斜率。

②导数与函数的单调性的关系

为增函数的关系。

能推出

为增函数,但反之不一定。如函数

上单调递增,但

,∴

为增函数的充分不必要条件。

时,

为增函数的关系。

若将

的根作为分界点,因为规定

,即抠去了分界点,此时

为增函数,就一定有

。∴当

时,

为增函数的充分必要条件。

为增函数的关系。

为增函数,一定可以推出

,但反之不一定,因为

,即为

。当函数在某个区间内恒有

,则

为常数,函数不具有单调性。∴

为增函数的必要不充分条件。

函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三个关系,用导数判断好函数的单调性。因此新教材为解决单调区间的端点问题,都一律用开区间作为单调区间,避免讨论以上问题,也简化了问题。但在实际应用中还会遇到端点的讨论问题,要谨慎处理。

四单调区间的求解过程,已知

(1)分析

的定义域;(2)求导数

(3)解不等式

,解集在定义域内的部分为增区间(4)解不等式

,解集在定义域内的部分为减区间。

我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。以下以增函数为例作简单的分析,前提条件都是函数

在某个区间内可导。

③求极值、求最值。

注意:极值≠最值。函数f(x)在区间[a,b]上的最大值为极大值和f(a)

、f(b)中最大的一个。最小值为极小值和f(a)

、f(b)中最小的一个。

f/(x0)=0不能得到当x=x0时,函数有极值。

但是,当x=x0时,函数有极值

f/(x0)=0

判断极值,还需结合函数的单调性说明。

4.导数的常规问题:

(1)刻画函数(比初等方法精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于

次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

加油!希望你在这方面有突破!

高考数学导数解题技巧

高中数学合集百度网盘下载

链接:提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

函数与导数解题方法知识点技巧总结

其他信息:

一、巧解选择、填空题 解选择、填空题的基本原则是“小题不可大做”。 思路:第一,直接从题干出发考虑,探求结果; 第二,从题干和选择联合考虑; 第三,从选择出发探求满足题干的条件。 解填空题基本方法有: 直接求解法、图像法、构造法和特殊化法(如特殊值、特殊函数、特殊角、特殊数列、图形的特殊位置、特殊点、特殊方程、特殊模型等)。 二、细答解答题 1.规范答题很重要 找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,高考评分是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学符号,这比文字叙述要节省时间且严谨。即使过程比较简单,也要简要地写出基本步骤,否则会被扣分。经常看到考生的卷面出现“会而不对”、“对而不全”的情况,造成考生自己的估分与实际得分相差很多。尤其是平面几何初步中的“跳步”书写,使考生丢分,所以考生要尽可能把过程写得详尽、准确。 2.分步列式 尽量避免用综合或连等式。高考评分是分步给分,写出每一个过程对应的式子,只要表达正确都可以得到相应的分数。有些考生喜欢写出一个综合或连等式,这种方式就不好,因为只要发现综合式中有一处错误,就可能丢过程分。对于没有得出最后结果的试题,分步列式也可以得到相应的过程分,由此增加得分机会。 3.尽量保证证明过程及计算方法大众化 解题时,使用通用符号,不易吃亏。有些考生为图简便使用一些特殊方法,可一旦结果有错,就会影响得分。

导数的题型及解题技巧是什么?

1、基本初等函数为载体,全面考查函数概念和基本运算,考查函数的定义域、值域、单调性、奇偶性、对称性、周期性、有界性,以及函数图象变换等核心概念和主干知识,试题属于简单题或中等难度题;

2、利用导数研究函数性质,其研究的过程和方法具有普适性、一般性和有效性,可以迁移到其他函数的研究中。

3、求函数的单调区间,实际上就是解导数为正或为负的不等式;“求导求驻点,列表看趋势”是求函数单调区间的基本方法,列表之前需要对函数定义域正确分区,其中边界就是f'(x)的零点。

4、分类与整合思想是必考的思想方法,而且常常落脚于函数与导数,不论是对函数单调性的讨论,还是在研究函数其他性质的求解过程,总是避免不了进行分类讨论。

5、分类与整合思想是有层次性的,最重要的是,要明白为什么要讨论,以及怎么分类

6、不论是对某个命题进行讨论还是证明,其解题特点一是强调逻辑的严谨性,二需要化归与转化,而且常常以基本初等函数为载体,利用方程、不等式、数学建模与导数、代数推理等知识点交汇,考查函数五大性质的应用、不等式问题和函数方程思想、数形结合思想、分类讨论思想等。

对于一元函数有,可微<=>可导=>连续=>可积

对于多元函数,不存在可导的概念,只有偏导数存在。函数在某处可微等价于在该处沿所有方向的方向导数存在,仅仅保证偏导数存在不一定可微,因此有:可微=>偏导数存在=>连续=>可积。

可导与连续的关系:可导必连续,连续不一定可导;

可微与连续的关系:可微与可导是一样的;

可积与连续的关系:可积不一定连续,连续必定可积;

可导与可积的关系:可导一般可积,可积推不出一定可导;

导函数

如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。

导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。

文章标签: # 函数 # 导数 # 10px