您现在的位置是: 首页 > 教育改革 教育改革

高考数学三角函数专题及答案_高考数学三角函数专题

tamoadmin 2024-05-27 人已围观

简介1.求高中三角函数数学题2.高考数学全国卷客观题:三角函数的图像与性质3.高考数学中的常考三角函数的公式。4.高中数学 三角函数1.以知向量m=(cosa,sina)和n=(根号2-sina,cosa),a属于〔180,360].(1)求|m+n|的最大值(2)当|m+n|=(8*根号2)/5,求cos(a/2+180度/8)的值 2.在三角形ABC中,角A,B,C的对边分别为a,b,c,且满

1.求高中三角函数数学题

2.高考数学全国卷客观题:三角函数的图像与性质

3.高考数学中的常考三角函数的公式。

4.高中数学 三角函数

高考数学三角函数专题及答案_高考数学三角函数专题

1.以知向量m=(cosa,sina)和n=(根号2-sina,cosa),a属于〔180,360].

(1)求|m+n|的最大值

(2)当|m+n|=(8*根号2)/5,求cos(a/2+180度/8)的值

2.在三角形ABC中,角A,B,C的对边分别为a,b,c,且满足a的平方+b 的平方-b的平方=ac

(1)求角B的大小

(2)设m=(sinA,cos2A),n=(-6,-1),求m*n的最小值

求高中三角函数数学题

由正弦公式:sinA/a=sinB/b=sinC/c

sinAsinBcosC=sin^2C两边同时除以abc

sinAsinBcosC/abc=sin^2C/abc

sin^2C/c^2*cosC=sin^2C/abc

cosC=c^2/ab

cosC=(a^2+b^2-c^2)/(2ab)

整理移项得

(a^2+b^2)/c^2=3

cosC=c^2/ab=(a^2+b^2-2abcosC)/(ab)

移项整理得

cosC=3/(3b)+b/(3a)≧2*根号(3/(3b)+b/(3a))=2/3

所以sinC的最大值=(1-cos^2C)^0.5=(1-4/9)^0.5=三分之根号五

高考数学全国卷客观题:三角函数的图像与性质

三角形中的三角函数式

三角形中的三角函数关系是历年高考的重点内容之一,本节主要帮助考生深刻理解正、余弦定理,掌握解斜三角形的方法和技巧.

●难点磁场

(★★★★★)已知△ABC的三个内角A、B、C满足A+C=2B. ,求cos 的值.

●案例探究

[例1]在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北30°东,俯角为60°的B处,到11时10分又测得该船在岛北60°西、俯角为30°的C处。

(1)求船的航行速度是每小时多少千米;

(2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?

命题意图:本题主要考查三角形基础知识,以及学生的识图能力和综合运用三角知识解决实际问题的能力.

知识依托:主要利用三角形的三角关系,关键找准方位角,合理利用边角关系.

错解分析:考生对方位角识别不准,计算易出错.

技巧与方法:主要依据三角形中的边角关系并且运用正弦定理来解决问题.

解:(1)在Rt△PAB中,∠APB=60° PA=1,∴AB= (千米)

在Rt△PAC中,∠APC=30°,∴AC= (千米)

在△ACB中,∠CAB=30°+60°=90°

(2)∠DAC=90°-60°=30°

sinDCA=sin(180°-∠ACB)=sinACB=

sinCDA=sin(∠ACB-30°)=sinACB?cos30°-cosACB?sin30° .

在△ACD中,据正弦定理得 ,

答:此时船距岛A为 千米.

[例2]已知△ABC的三内角A、B、C满足A+C=2B,设x=cos ,f(x)=cosB( ).

(1)试求函数f(x)的解析式及其定义域;

(2)判断其单调性,并加以证明;

(3)求这个函数的值域.

命题意图:本题主要考查考生运用三角知识解决综合问题的能力,并且考查考生对基础知识的灵活运用的程度和考生的运算能力,属★★★★级题目.

知识依托:主要依据三角函数的有关公式和性质以及函数的有关性质去解决问题.

错解分析:考生对三角函数中有关公式的灵活运用是难点,并且不易想到运用函数的单调性去求函数的值域问题.

技巧与方法:本题的关键是运用三角函数的有关公式求出f(x)的解析式,公式主要是和差化积和积化和差公式.在求定义域时要注意| |的范围.

解:(1)∵A+C=2B,∴B=60°,A+C=120°

∵0°≤| |<60°,∴x=cos ∈( ,1

又4x2-3≠0,∴x≠ ,∴定义域为( , )∪( ,1].

(2)设x1<x2,∴f(x2)-f(x1)=

= ,若x1,x2∈( ),则4x12-3<0,4x22-3<0,4x1x2+3>0,x1-x2<0,∴f(x2)-f(x1)<0

即f(x2)<f(x1),若x1,x2∈( ,1],则4x12-3>0.

4x22-3>0,4x1x2+3>0,x1-x2<0,∴f(x2)-f(x1)<0.

即f(x2)<f(x1),∴f(x)在( , )和( ,1 上都是减函数.

(3)由(2)知,f(x)<f( )=- 或f(x)≥f(1)=2.

故f(x)的值域为(-∞,- )∪[2,+∞ .

●锦囊妙计

本难点所涉及的问题以及解决的方法主要有:

(1)运用方程观点结合恒等变形方法巧解三角形;

(2)熟练地进行边角和已知关系式的等价转化;

(3)能熟练运用三角形基础知识,正、余弦定理及面积公式与三角函数公式配合,通过等价转化或构建方程解答三角形的综合问题,注意隐含条件的挖掘.

●歼灭难点训练

一、选择题

1.(★★★★★)给出四个命题:(1)若sin2A=sin2B,则△ABC为等腰三角形;(2)若sinA=cosB,则△ABC为直角三角形;(3)若sin2A+sin2B+sin2C<2,则△ABC为钝角三角形;(4)若cos(A-B)cos(B-C)cos(C-A)=1,则△ABC为正三角形.以上正确命题的个数是( )

A.1 B.2 C.3 D.4

二、填空题

2.(★★★★)在△ABC中,已知A、B、C成等差数列,则 的值为__________.

3.(★★★★)在△ABC中,A为最小角,C为最大角,已知cos(2A+C)=- ,sinB= ,则cos2(B+C)=__________.

三、解答题

4.(★★★★)已知圆内接四边形ABCD的边长分别为AB=2,BC=6,CD=DA=4,求四边形ABCD的面积.

5.(★★★★★)如右图,在半径为R的圆桌的正中央上空挂一盏电灯,桌子边缘一点处的照度和灯光射到桌子边缘的光线与桌面的夹角θ的正弦成正比,角和这一点到光源的距离 r的平方成反比,即I=k? ,其中 k是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度h,才能使桌子边缘处最亮?

6.(★★★★)在△ABC中,a、b、c分别为角A、B、C的对边, .

(1)求角A的度数;

(2)若a= ,b+c=3,求b和c的值.

7.(★★★★)在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且a、b、3c成等比数列,又∠A-∠C= ,试求∠A、∠B、∠C的值.

8.(★★★★★)在正三角形ABC的边AB、AC上分别取D、E两点,使沿线段DE折叠三角形时,顶点A正好落在边BC上,在这种情况下,若要使AD最小,求AD∶AB的值.

参考答案

难点磁场

解法一:由题设条件知B=60°,A+C=120°.

设α= ,则A-C=2α,可得A=60°+α,C=60°-α,

依题设条件有

整理得4 cos2α+2cosα-3 =0(M)

(2cosα- )(2 cosα+3)=0,∵2 cosα+3≠0,

∴2cosα- =0.从而得cos .

解法二:由题设条件知B=60°,A+C=120°

①,把①式化为cosA+cosC=-2 cosAcosC ②,

利用和差化积及积化和差公式,②式可化为

③,

将cos =cos60°= ,cos(A+C)=- 代入③式得:

将cos(A-C)=2cos2( )-1代入 ④:4 cos2( )+2cos -3 =0,(*),

歼灭难点训练

一、1.解析:其中(3)(4)正确.

答案: B

二、2.解析:∵A+B+C=π,A+C=2B,

答案:

3.解析:∵A为最小角∴2A+C=A+A+C<A+B+C=180°.

∵cos(2A+C)=- ,∴sin(2A+C)= .

∵C为最大角,∴B为锐角,又sinB= .故cosB= .

即sin(A+C)= ,cos(A+C)=- .

∵cos(B+C)=-cosA=-cos[(2A+C)-(A+C)]=- ,

∴cos2(B+C)=2cos2(B+C)-1= .

答案:

三、4.解:如图:连结BD,则有四边形ABCD的面积:

S=S△ABD+S△CDB= ?AB?ADsinA+ ?BC?CD?sinC

∵A+C=180°,∴sinA=sinC

故S= (AB?AD+BC?CD)sinA= (2×4+6×4)sinA=16sinA

由余弦定理,在△ABD中,BD2=AB2+AD2-2AB?AD?cosA=20-16cosA

在△CDB中,BD2=CB2+CD2-2CB?CD?cosC=52-48cosC

∴20-16cosA=52-48cosC,∵cosC=-cosA,

∴64cosA=-32,cosA=- ,又0°<A<180°,∴A=120°故S=16sin120°=8 .

5.解:R=rcosθ,由此得: ,

7.解:由a、b、3c成等比数列,得:b2=3ac

∴sin2B=3sinC?sinA=3(- )[cos(A+C)-cos(A-C)]

∵B=π-(A+C).∴sin2(A+C)=- [cos(A+C)-cos ]

即1-cos2(A+C)=- cos(A+C),解得cos(A+C)=- .

∵0<A+C<π,∴A+C= π.又A-C= ∴A= π,B= ,C= .

8.解:按题意,设折叠后A点落在边BC上改称P点,显然A、P两点关于折线DE对称,又设∠BAP=θ,∴∠DPA=θ,∠BDP=2θ,再设AB=a,AD=x,∴DP=x.在△ABC中,

∠APB=180°-∠ABP-∠BAP=120°-θ,?

由正弦定理知: .∴BP=

在△PBD中, ,

∵0°≤θ≤60°,∴60°≤60°+2θ≤180°,∴当60°+2θ=90°,即θ=15°时,

sin(60°+2θ)=1,此时x取得最小值 a,即AD最小,∴AD∶DB=2 -3.

高考数学中的常考三角函数的公式。

(2)

4.若 ,则

(5)若 ,则

5.已知角 的顶点与原点重合,始边与 轴的正半轴重合,终边在直线 上,则

9.若 是第三象限的角,则

(9)已知 ,函数 在 单调递减,则 的取值范围是

(15)设当 时,函数 取得最大值,则 .

(14)函数 的最大值为 .

(6)如图,圆 的半径为 , 是圆上的定点, 是圆上的动点,角 的始边为射线 ,终边为射线 ,过点 作直线 的垂线,垂足为 . 将点 到直线 的距离表示成 的函数 ,则 在 的图像大致为

(8)设 ,且 ,则

(8)函数 的部分图像如图所示,则 的单调递减区间为

(14)函数 的图像可由函数 的图像至少向右平移 个单位长度得到.

(7)若将函数 的图像向左平移 个单位长度,则平移后图像的对称轴为

(9)若 ,则

6.设函数 ,则下列结论错误的是

的一个周期为

的图像关于直线 对称

的一个零点为

在 单调递减

14.函数 的最大值是 .

9.已知曲线 ,则下面结论正确的是

A.把 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线

B.把 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线

C.把 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线

D.把 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线

15.函数 在 的零点个数为 .

10.若 在 是减函数,则 的最大值是

15.已知 则 .

9.下列函数中,以 为周期且在 区间单调递增的是

10.已知 ,则

5.函数 在 的图像大致为

11.关于函数 有下述四个结论:

(1) 是偶函数

(2) 在区间 单调递增

(3) 在 有 4 个零点

(4) 的最大值为 2

其中所有正确结论的编号是

A.①②④

B.②④

C.①④

D.①③

设函数 . 若存在 的极值点 满足 ,则 的取值范围是

设函数 ,已知 在 有且仅有5个零点,下述四个结论:

① 在 有且仅有3个极大值点

② 在 有且仅有2个极大值点

③ 在 单调递增

④ 的取值范围是

其中所有正确结论的编号是

A.①④

B.②③

C.①②③

D.①③④

高中数学 三角函数

三角函数公式及应用

一、知识要点

1.三角函数式的变形应利用三角公式从以下三个方面入手:

(1)变名:注意条件与结论中三角函数式的名称有什么差别及联系,通过同角三角函数公式,诱导公式,万能公式等,达到统一函数名称的目的.

(2)变角:注意条件与结论中三角函数式的角有什么差别及联系,通过诱导公式、和、差、倍、半角的三角函数公式等,达到把三角函数中的角统一起来的目的.

(3)变运算形式:根据需要,将条件与结论的运算形式化一,将等式一边的运算形式化成另一边的运算形式,通过升次与降次的转化以达到目的.

2.三角形中的三角函数(内角和定理、正弦定理、余弦定理)

3.应用三角变换公式,要注意公式间的联系,公式成立的条件.每个三角公式的结构特征,都决定了它的双向功能,从左到右及从右到左常常可起到不同的作用.所谓三角恒等变形是指在有意义的条件下有恒等关系,但三角变换常常会改变三角式中角的取值范围,因此在讨论由三角函数式表示的函数性质时,应首先确定其定义域,以确保变形后的函数与原函数是同一函数.

解1题目应该是sin3C/sinB

由A+B+C=180°

把 A=2C 代入得

3C+B=180°

即3C=180°-B

即sin3C=sin(180°-B)=sinB

即sin3C/sinB=1

2 由tan60°=(tan20°+tan40°)/(1-tan20°tan40°)=√3

即两边乘以1-tan20°tan40°

tan20°+tan40°=√3(1-tan20°tan40°)

tan20°+tan40°=√3-√3tan20°tan40°

tan20°+tan40°+√3tan20°tan40°=√3

3由cosA/cosB=b/a

即bcosB=acosA

由正弦定理知

sinBcosB=sinAcosA

即2sinBcosB=2sinAcosA

即sin2B=sin2A

即2A=2B或2A+2B=180°

即A=B或A+B=90°

即三角形ABC是等腰或直角三角形。

文章标签: # 三角函数 # cos # 函数