您现在的位置是: 首页 > 教育改革 教育改革

文科高数极限例题,高考文数极限

tamoadmin 2024-05-25 人已围观

简介1.文科数学高考必考的知识点有哪些?2.2011高考湖北文科数学各内容所占比例?3.新高考文科数学一般考多少分正常4.2022全国新高考Ⅱ卷文科数学试题及答案解析5.高三文科数学公式总结6.高分追加求高考文科数学第二轮复习法不一样。文科数学和理科数学的高考试卷不一样,主要的区别在于难度和内容。理科数学的难度相对较高,涵盖的知识点也更多更深入,如解析几何、参数方程、行列式、二项式定理等,而文科数学相

1.文科数学高考必考的知识点有哪些?

2.2011高考湖北文科数学各内容所占比例?

3.新高考文科数学一般考多少分正常

4.2022全国新高考Ⅱ卷文科数学试题及答案解析

5.高三文科数学公式总结

6.高分追加求高考文科数学第二轮复习法

文科高数极限例题,高考文数极限

不一样。

文科数学和理科数学的高考试卷不一样,主要的区别在于难度和内容。理科数学的难度相对较高,涵盖的知识点也更多更深入,如解析几何、参数方程、行列式、二项式定理等,而文科数学相对较为简单,内容也较少。故文理科的数学高考在试卷上会有明显的区分。

文科数学高考必考的知识点有哪些?

以下是理科数学和文科数学的区别:

1、书本数量不同:文科数学比理科数学的选修书要少一本;

2、学习侧重点不同:文科数学学习重点在于理论知识,理科数学学习重点在于灵活运用;

3、试卷难度不同:文科数学的试卷相较于理科数学的试卷要简单许多。文科生和理科生在填报高考志愿的时候,理科生的选择比文科生多。

4、文科数学相比理科数学简单;试卷不同考试的时候文理数学卷子是不一样的,就如同学习内容一样,文科数学卷子比理科数学卷子简单一些。还有就是考试题,对于同一个知识点,理科数学试题比较难理解,文科则比较直白。

2011高考湖北文科数学各内容所占比例?

选择:集合、面积体积、三角系列、概率、函数、向量、不等式、圆锥曲线、复数

大题:概率、三角函数、数列、几何、圆锥曲线、极限、导数、直线与圆、不等式。

范围都在必修12345和选修1-1、1-2、4-4.内

考点也就那几个

集合、

复数、

概率、

椭圆、

双曲线、

抛物线、

命题、

等差、

等比、

框图、

三角函数、

解三角、

三视图、

求体积、求面积、

解不等式、

向量、

线性、

树状图、

方差、

解析几何、

求导、

坐标系、

对数、指数、

圆。

新高考文科数学一般考多少分正常

2011高考湖北文科数学

数学:中低档题不低于70%

考试内容圈定15个大项

考试内容

1.平面向量

2.集合、简易逻辑

3.函数

4.不等式

5.三角函数

6.数列

7.直线和圆的方程

8.圆锥曲线方程

9.直线、平面、简单几何体

10.排列、组合、二项式定理

11.概率

12.概率与统计(文科仅有统计)

13.极限(文科不做要求)

14.导数

导数的概念,导数的几何意义,几种常见函数的导数。

两个函数的和、差、积、商和

导数,复习函数的导数,基本导数公式。

利用导数研究函数的单调性和极值,函数的最大值和最小值。

*文科导数部分的考试内容:

导数的背景,导数的概念,多项式函数的导数,利用导数研究函数的单调性和极值,函数的最大值与最小值

15.数系的扩充——复数(文科不做要求)

复数的概念,复数的加法和减法,复数的乘法和除法,数系的扩充。

》》》名师评析

按考纲精神,高考难度可能降

考纲变化

2007年高考数学考试大纲与去年相比,总体保持平稳,将继续加强对主干知识的考查。

★文科:

1.三角函数的考试要求中的“理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算”改为“了解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算”。

三角函数的考试要求中的“掌握任意角的正弦、余弦、正切的定义”改为“理解任意角的正弦、余弦、正切的定义”。

2.直线,平面,简单几何体(A、B)的考试要求中“掌握平面的基本性质”改为“理解平面的基本性质”。直线、平面、简单几何体(B)的考试要求中删除了“理解直线和平面垂直的概念”。

这一变化说明今年的数学考纲降低了三角函数和立体几何这两个知识点的要求。三角函数本来的要求就是强调作为工具,因此没必要钻研过深,而学立体几何这两年出现学生求难的趋势,也是没有必要的,降低知识点的要求也是应该的。

祝你好运啊!!!

2022全国新高考Ⅱ卷文科数学试题及答案解析

90分。新高考数学满分150,及格分为90分,优秀分为120分,优异分为140分以上。文科的数学相对较差,所以一般考90分算正常分数。高考是合格的高中毕业生或具有同等学历的考生参加的选拔性考试。

高三文科数学公式总结

在高考结束后,很多考生都会对答案,提前预估自己的分数,这样方便大家提前准备志愿填报。下面是我分享的2022全国新高考Ⅱ卷文科数学试题及答案解析,欢迎大家阅读。

2022全国新高考Ⅱ卷文科数学试题及答案解析

2022全国新高考Ⅱ卷文科数学试题还未出炉,待高考结束后,我会第一时间更新2022全国新高考Ⅱ卷文科数学试题,供大家对照、估分、模拟使用。

2022高考数学大题题型 总结

一、三角函数或数列

数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等差数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。

近几年来,关于数列方面的考题题主要包含以下几个方面:

(1)数列基本知识考查,主要包括基本的等差数列和等比数列概念以及通项公式和求和公式。

(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。

(3)应用题中的数列问题,一般是以增长率问题出现。

二、立体几何

高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

三、统计与概率

1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机事件的发生存在着规律性和随机事件概率的意义。

6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8.会计算事件在n次独立重复试验中恰好发生k次的概率.

四、解析几何(圆锥曲线)

高考解析几何剖析:

1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:

(1)、几何问题代数化。

(2)、用代数规则对代数化后的问题进行处理。

五、函数与导数

导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:

1.导数的常规问题:

(1)刻画函数(比初等 方法 精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

2022高考解答题评分标准

解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。

解题策略:

(1)常见失分因素:

1.对题意缺乏正确的理解,应做到慢审题快做题;

2.公式记忆不牢,考前一定要熟悉公式、定理、性质等;

3.思维不严谨,不要忽视易错点;

4.解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;

5.计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

6.轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。

2022全国新高考Ⅱ卷文科数学试题及答案解析相关 文章 :

★ 2022高考全国甲卷数学试题及答案

★ 2022年全国乙卷高考语文真题试卷及答案解析(未公布)

★ 2022年浙江高考数学试卷

★ 2022新高考2卷语文试题及答案一览

★ 2022全国高考试卷分几类

★ 2022高考数学必考知识点归纳最新

★ 2022年高考数学必考知识点总结最新

★ 2022高考文综理综各题型分数值一览

★ 2022年新高考Ⅰ卷语文题目与答案参考

★ 2022新高考Ⅱ卷选择创造未来作文12篇

高分追加求高考文科数学第二轮复习法

高三文科生在复习数学科目时,首先需要掌握数学公式。为了帮助高考考生掌握数学公式,下面我为高三文科生整理数学公式,希望对大家有所帮助!

高三文科数学公式

 一、对数函数

 log.a(MN)=logaM+logN

 loga(M/N)=logaM-logaN

 logaM^n=nlogaM(n=R)

 logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)

 二、简单几何体的面积与体积

 S直棱柱侧=c*h(底面周长乘以高)

 S正棱椎侧=1/2*c*h?(底面的周长和斜高的一半)

 设正棱台上、下底面的周长分别为c?,c,斜高为h?,S=1/2*(c+c?)*h

 S圆柱侧=c*l

 S圆台侧=1/2*(c+c?)*l=兀*(r+r?)*l

 S圆锥侧=1/2*c*l=兀*r*l

 S球=4*兀*R^3

 V柱体=S*h

 V锥体=(1/3)*S*h

 V球=(4/3)*兀*R^3

 三、两直线的位置关系及距离公式

 (1)数轴上两点间的距离公式|AB|=|x2-x1|

 (2) 平面上两点A(x1,y1),(x2,y2)间的距离公式

 |AB|=sqr[(x2-x1)^2+(y2-y1)^2]

 (3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式 d=|Ax0+By0+C|/sqr

 (A^2+B^2)

 (4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-

 C2|/sqr(A^2+B^2)

 同角三角函数的基本关系及诱导公式

 sin(2*k*兀+a)=sin(a)

 cos(2*k*兀+a)=cosa

 tan(2*兀+a)=tana

 sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana

 sin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tana

 sin(兀+a)=-sina

 sin(兀-a)=sina

 cos(兀+a)=-cosa

 cos(兀-a)=-cosa

 tan(兀+a)=tana

 四、二倍角公式及其变形使用

 1、二倍角公式

 sin2a=2*sina*cosa

 cos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2

 tan2a=(2*tana)/[1-(tana)^2]

 2、二倍角公式的变形

 (cosa)^2=(1+cos2a)/2

 (sina)^2=(1-cos2a)/2

 tan(a/2)=sina/(1+cosa)=(1-cosa)/sina

 五、正弦定理和余弦定理

 正弦定理:

 a/sinA=b/sinB=c/sinC

 余弦定理:

 a^2=b^2+c^2-2bccosA

 b^2=a^2+c^2-2accosB

 c^2=a^2+b^2-2abcosC

 cosA=(b^2+c^2-a^2)/2bc

 cosB=(a^2+c^2-b^2)/2ac

 cosC=(a^2+b^2-c^2)/2ab

 tan(兀-a)=-tana

 sin(兀/2+a)=cosa

 sin(兀/2-a)=cosa

 cos(兀/2+a)=-sina

 cos(兀/2-a)=sina

 tan(兀/2+a)=-cota

 tan(兀/2-a)=cota

 (sina)^2+(cosa)^2=1

 sina/cosa=tana

 两角和与差的余弦公式

 cos(a-b)=cosa*cosb+sina*sinb

 cos(a-b)=cosa*cosb-sina*sinb

 两角和与差的正弦公式

 sin(a+b)=sina*cosb+cosa*sinb

 sin(a-b)=sina*cosb-cosa*sinb

 两角和与差的正切公式

 tan(a+b)=(tana+tanb)/(1-tana*tanb)

 tan(a-b)=(tana-tanb)/(1+tana*tanb)

高中数学知识点速记口诀

 1.《集合与函数》

 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

 指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

 函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

 两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

 奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

 2.《三角函数》

 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

 顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,

 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

 将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

 余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

 逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

 万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

 利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

 3.《不等式》

 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

 高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

 证不等式的 方法 ,实数性质威力大。求差与0比大小,作商和1争高下。

 直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

 还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

 4.《数列》

 等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。

 数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,

 取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:

 一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:

 首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

 5.《复数》

 虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。

 对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。

 箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。

 代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。

 一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。

 利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,

 减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

 三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。

 辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,

 两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。

 6.《排列、组合、二项式定理》

 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。

 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。

 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

 不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。

 关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。

 7.《立体几何》

 点线面三位一体,柱锥 台球 为代表。距离都从点出发,角度皆为线线成。

 垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

 方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

 立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

 异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

 8.《平面解析几何》

 有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

 笛卡尔的观点对,点和有序实数对,两者一一来对应,开创几何新途径。

 两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

 三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

 四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

 解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

高三文科 数学 学习方法

 一:加深理解

 对数学课本里的概念要重新的认识,进一步加深对公式,定理的理解和掌握,认真看书,多练习,全面掌握,结合所有资料,提高解题的能力和更深知识的理解。

 二:认真做笔记

 上课时,一定要认真听,做笔记。听课不只是要听而已,还在积极的思考老师提出的问题,想想如何解决这个问题,应该要用什么方法,什么公式等等。老师上课时讲的,都会有一些的解题方法和思路,还有平时都会出错的问题,如何去解决,判断。所以上课做好笔记是必须的。

 三:反复练习

高中数学合集百度网盘下载

链接:提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

文章标签: # 高考 # 数学 # 文科